Previous |  Up |  Next

Article

Title: Disturbance observer based integral terminal sliding mode control for permanent magnet synchronous motor system (English)
Author: Wang, Junxiao
Author: Wang, Fengxiang
Author: Wang, Xianbo
Author: Yu, Li
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 3
Year: 2019
Pages: 586-603
Summary lang: English
.
Category: math
.
Summary: This paper presents speed regulation issue of Permanent Magnet Synchronous Motor (PMSM) using a composite integral terminal sliding mode control scheme via a disturbance compensation technique. The PMSM $q$-axis and $d$-axis subsystems are firstly transformed into two linear subsystems by using feedback linearization technique, then, integral terminal sliding mode controller and finite-time controller are designed respectively. The proof of finite time stability are given for the PMSM closed-loop system. Compared with the corresponding asymptotical stability control method, the proposed controller can make the system output track the desired speed reference signal in finite time and obtain a better dynamic response and anti-disturbance performance. Meanwhile, considering the large chattering phenomenon caused by high switching gains, a composite integral terminal sliding mode control method based on disturbance observer is proposed to reduce chattering phenomenon. Through disturbance estimation based feed-forward compensation, the composite integral terminal sliding mode controller may take a smaller value for the switching gain without sacrificing disturbance rejection performance. Experimental results are provided to show the superiority of proposed control method. (English)
Keyword: PMSM
Keyword: integral terminal sliding mode control
Keyword: finite-time control
Keyword: feedback linearization
Keyword: disturbance observer
MSC: 93C73
MSC: 93C95
idZBL: Zbl 07144955
idMR: MR4016000
DOI: 10.14736/kyb-2019-3-0586
.
Date available: 2019-11-14T08:44:30Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147864
.
Reference: [1] Bhat, S. P., Bernstein, D. S.: Finite-time stability of homogeneous systems..In: Proc. American Control Conference, Albuquerque 1997, pp. 2513-2516. 10.1109/acc.1997.609245
Reference: [2] Bhat, S. P., Bernstein, D. S.: Finite-time stability of continuous autonomous systems..SIAM J. Control Optim. 38 (1998), 751-766. Zbl 0945.34039, MR 1756893, 10.1137/s0363012997321358
Reference: [3] Bhat, S. P., Bernstein, D. S.: Continuous finite-time stabilization of the translational and rotational double integrators..IEEE Trans. Automat. Control 43 (1998), 678-682. Zbl 0925.93821, MR 1618028, 10.1109/9.668834
Reference: [4] Bhat, S. P., Bernstein, D. S.: Geometric homogeneity with applications to finite time stability..Math. Control Signals System 17 (2005), 101-127. MR 2150956, 10.1007/s00498-005-0151-x
Reference: [5] Chen, W. H.: Disturbance observer based control for nonlinear systems..IEEE ASME Trans. Mechatron. 9(2004), 4, 706-710. 10.1109/tmech.2004.839034
Reference: [6] Chern, T. L., Wu, Y. C.: An optimal variable structure control with integral compensation for electrohydraulic position servo control systems..IEEE Trans. Ind. Electron. 39 (1992), 5, 460-463. 10.1109/41.161478
Reference: [7] Feng, Y., Zheng, J. F., Yu, X. H., Vu, Nguyen: High-order terminal sliding-mode observer design method for a permanent-magnet. synchronous motor control system..IEEE Trans. Ind. Electron. 56 (2009), 9, 3424-3431. 10.1109/tie.2009.2025290
Reference: [8] Guo, L., Chen, W. H.: Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach..Int. J. Robust Nonlinear Control 15 (2005), 3, 109-125. Zbl 1078.93030, MR 2117031, 10.1002/rnc.978
Reference: [9] Haimo, V. T.: Finite-time controllers..SIAM J. Control Optim. 24 (1986), 760-770. MR 0846381, 10.1137/0324047
Reference: [10] Han, J.: From PID to active disturbance rejection control..IEEE Trans. Ind. Electron. 56 (2009), 3, 900-906. 10.1109/tie.2008.2011621
Reference: [11] Hsien, T. L., Sun, Y. Y., Tai, M. C.: H1 control for a sensorless permanent-magnet Synchronous drive..IEE Proc. Electr. Power. Appl. 144 (1997), 3, 173-181. 10.1049/ip-epa:19970988
Reference: [12] Khail, H. K.: Nonlinear Systems PID predictive controller. Third Edition..Upper Saddle River, Prentice-Hall, NJ 1996.
Reference: [13] Kim, H., Son, J., Lee, J.: A high-speed sliding-mode observer for the sensorless speed control of a PMSM..IEEE Trans. Ind. Electron. 58 (2011), 9, 4069-4077. 10.1109/tie.2010.2098357
Reference: [14] Kung, Y. S., Tsai, M. H.: FPGA-based speed control IC for PMSM drive with adaptive fuzzy control..IEEE Trans. Power. Electron. 22 (2007), 6, 2476-2486. 10.1109/tpel.2007.909185
Reference: [15] Lai, C. K., Shyu, K. K.: A novel motor drive Design for incremental motion system via sliding-mode control method..IEEE Trans. Ind. Electron. 52 (2005), 2, 499-507. 10.1109/tie.2005.844230
Reference: [16] Leu, V. Q., Han, J. C., Jung, J. W.: Fuzzy sliding mode speed controller for PM synchronous motors with a load torque observer..IEEE Trans. Pow. Electron. 27 (2012), 3, 1530-1539. 10.1109/tpel.2011.2161488
Reference: [17] Levant, A.: Robust exact differentiation via sliding mode technique..Automatica 34 (1998), 3, 379-384. Zbl 0915.93013, MR 1623077, 10.1016/s0005-1098(97)00209-4
Reference: [18] Li, J., Li, S. H., Chen, X. S.: Adaptive speed control of PMSM servo system using a RBFN disturbance observer..Trans. Inst. Meas. Control 34 (2012), 5, 615-626. 10.1177/0142331211410920
Reference: [19] Li, S. H., Liu, Z. G.: A daptive speed control for permanent-magnet synchronous motor system with variations of load inertia..IEEE Trans. Ind. Electron. 56 (2009), 8, 3050-3059. 10.1109/tie.2009.2024655
Reference: [20] Li, S. H., Liu, H. X., Ding, S. H.: A speed control for a PMSM using finite-time feedback control and disturbance compensation..Trans. Inst. Meas. Control. 32 (2010), 2, 170-187. 10.1177/0142331209339860
Reference: [21] Li, S. H., Tian, Y. P.: Finite-time stability of cascaded time-varying systems..Int. J. Control 80 (2007), 4, 646-657. Zbl 1117.93004, MR 2304124, 10.1080/00207170601148291
Reference: [22] Li, S. H., Zong, K., Liu, H. X.: A composite speed controller based on a second-order model of permanent magnet synchronous motor system..Trans. Inst. Meas. Control. 33 (2011), 5, 522-541. 10.1177/0142331210371814
Reference: [23] Li, S. H., Zhou, M. M., Yu, X. H.: Design and implementation of terminal sliding mode control method for PMSM speed regulation system..IEEE Trans. Ind. Inform. 9 (2013), 4, 1879-1891. 10.1109/tii.2012.2226896
Reference: [24] Luo, Y., Chen, Y. Q., Ahnc, H. S., Pi, Y.: Fractional order robust control for cogging effect compensation in PMSM position servo systems: stability analysis and experiments..Control. Eng. Practice. 18 (2010), 9, 1022-1036. MR 2642618, 10.1016/j.conengprac.2010.05.005
Reference: [25] She, J. H., Fang, M. Y., Ohyama, H., Hashimoto, H., Wu, M.: Improving disturbance-rejection performance based on an equivalent-input-disturbance approach..IEEE Trans. Ind. Electron. 55 (2008), 1, 380-389. 10.1109/tie.2007.905976
Reference: [26] Tang, R. Y.: Modern permanent magnet synchronous motor theory and design..Machinery Industry Press, Beijing 1997.
Reference: [27] Umeno, T., Hori, Y.: Robust speed control of DC servo motors using modern two degrees-of-freedom controller design..IEEE Trans. Ind. Electron. 38 (1991), 5, 363-368. 10.1109/41.97556
Reference: [28] Vilath, G., Rahman, M., Tseng, K., Uddin, M.: Nonlinear control of interior permanent magnet synchronous motor..IEEE Trans. Indust. Appl. 39 (2003), 2, 408-415. 10.1109/tia.2003.808932
Reference: [29] Wang, G. J., Fong, C. T., Chang, K. J.: Neural-network-based self-tuning PI controller for precise motion control of PMAC motors..IEEE Trans. Ind. Electron. 48 (2001), 2, 408-415. 10.1109/41.915420
Reference: [30] Wang, J., Wang, F., Wang, G., al., et: Generalized proportional integral observer-based robust finite control set predictive current control for induction motor systems with time-varying disturbances..IEEE Trans. Ind. Informa. 14 (2018), 9, 4159-4168. 10.1109/tii.2018.2818153
Reference: [31] Wang, J., Wang, F., Zhang, Z., al., et: Design and implementation of disturbance compensation-based enhanced robust finite control set predictive torque control for induction motor systems..IEEE Trans. Ind. Inforn. 13 (2017), 5, 2645-2656. 10.1109/tii.2017.2679283
Reference: [32] Yang, J., Li, S. H., Yu, X. H.: Sliding mode control for systems with mismatched uncertainties via a disturbance observer..IEEE Trans. Ind. Electron. 60 (2013), 1, 160-169. 10.1109/tie.2012.2183841
Reference: [33] Yang, J., Wu, H., Hu, L., al., et: Robust predictive speed regulation of converter-driven DC Motors via a discrete-time reduced-order GPIO..IEEE Trans. Ind. Electron, online (2018).
Reference: [34] Zarchi, H. A., Markadeh, G. R. A., Soltani, J.: Direct torque and flux regulation of synchronous reluctance motor drives based on input-output feedback linearization..Energy. Convers. Manag. 51 (2010), 1, 71-80. 10.1016/j.enconman.2009.08.031
Reference: [35] Zhou, J., Wang, Y.: Adaptive backstepping speed controller design for a Permanent magnet synchronous motor..IEE Proc. Electr. Power. Appl. 149 (2002), 2, 165-72. 10.1049/ip-epa:20020187
Reference: [36] Zong, Q., Zhao, Z. S., Zhang, J.: Higher order sliding mode control with self-tuning law based on integral sliding mode..IET Contr. Theory. Appl. 4 (2010), 7, 1282-1289. MR 2768249, 10.1049/iet-cta.2008.0610
.

Files

Files Size Format View
Kybernetika_55-2019-3_9.pdf 1.913Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo