Previous |  Up |  Next

Article

Title: Robust hierarchical sliding mode control with state-dependent switching gain for stabilization of rotary inverted pendulum (English)
Author: Idrees, Muhammad
Author: Muhammad, Shah
Author: Ullah, Saif
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 3
Year: 2019
Pages: 455-471
Summary lang: English
.
Category: math
.
Summary: The rotary inverted pendulum (RIP) system is one of the fundamental, nonlinear, unstable and interesting benchmark systems in the field of control theory. In this paper, two nonlinear control strategies, namely hierarchical sliding mode control (HSMC) and decoupled sliding mode control (DSMC), are discussed to address the stabilization problem of the RIP system. We introduced HSMC with state-dependent switching gain for stabilization of the RIP system. Numerical simulations are performed to analyze the performance of the hierarchical sliding mode controllers with the decoupled sliding mode controller and the controller obtained from the pole placement technique. We proposed HSMC with state-dependent switching gain as it shows better performance as compared to HSMC with constant switching gain, DSMC, and the state feedback controller based on pole placement technique. The stability analysis of proposed HSMC is also discussed by using Lyapunov stability theory. (English)
Keyword: rotary inverted pendulum
Keyword: sliding mode control
Keyword: dynamical systems
MSC: 93A30
MSC: 93C10
MSC: 93D05
MSC: 93D09
MSC: 93D20
idZBL: Zbl 07144948
idMR: MR4015993
DOI: 10.14736/kyb-2019-3-0455
.
Date available: 2019-11-14T08:34:35Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147869
.
Reference: [1] Antonio-Toledo, M. E., Sanchez, E. N., Alanis, A. Y., Florez, J., Perez-Cisneros, M. A.: Real-time integral backstepping with sliding mode control for a quadrotor UAV..IFAC-Papers Online 51 (2018), 549-554. 10.1016/j.ifacol.2018.07.337
Reference: [2] Butt, Y. A.: Robust stabilization of a class of nonholonomic systems using logical switching and integral sliding mode control..Alexandria Engrg. J. 57 (2018), 1591-1596. 10.1016/j.aej.2017.05.017
Reference: [3] Baker, G. J., Blackburn, J. A.: The Pendulum: A Case Study in Physics..Oxford University Press, New York 2002. MR 2155144
Reference: [4] Chen, Y. F., Huang, A. C.: Adaptive control of rotary inverted pendulum system with time-varying uncertainties..Nonlinear Dynamics 76 (2014), 95-102. MR 3189156, 10.1007/s11071-013-1112-4
Reference: [5] Choi, J. J., Kim, J. S.: Robust control for rotational inverted pendulums using output feedback sliding mode controller and disturbance observer..KSME Int. J. 17 (2003), 1466-1474. 10.1007/bf02982326
Reference: [6] Coban, R., Ata, B.: Decoupled sliding mode control of an inverted pendulum on a cart: An experimental study..In: IEEE International Conference on Advanced Intelligent Mechatronics, Germany 2017. 10.1109/aim.2017.8014148
Reference: [7] Furuta, K., Yamakita, M., Kobayashi, S.: Swing-up control of inverted pendulum using pseudo-state feedback..J. Systems Control Engrg. 206 (1992), 263-269. 10.1243/pime_proc_1992_206_341_02
Reference: [8] Gao, W., Hung, J. C.: Variable structure control of nonlinear systems: A new approach..IEEE Trans. Industr. Electronics 40 (1993), 45-55. MR 3860982, 10.1109/41.184820
Reference: [9] Grasser, F., D{$^\prime$}Arrigo, A., Colombi, S., Rufer, A. C.: Joe: a mobile, inverted pendulum..IEEE Trans. Industr. Electron. 49 (2002), 107-114. 10.1109/41.982254
Reference: [10] Hassanzadeh, I., Mobayen, S.: Controller design for rotary inverted pendulum system using evolutionary algorithms..Math. Problems Engrg. 2011 (2011), 1-17. 10.1155/2011/572424
Reference: [11] Irfan, J., Rehan, J., Zhao, J., Rizwan, J., Abdus, S.: Mathematical model analysis and control algorithms design based on state feedback method of rotary inverted pendulum..Int. J. Research Engrg. Technol. 1 (2013), 41-50.
Reference: [12] Jia, Z., Yu, J., Mei, Y., Chen, Y., Shen, Y., Ai, X.: Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances..Aerospace Science Technol. 68 (2017), 299-307. 10.1016/j.ast.2017.05.022
Reference: [13] Jadlovska, S., Sarnovsky, J.: Modelling of classical and rotary inverted pendulum systems: A generalized approach..J. Electr. Engrg. 64 (2013), 12-19. 10.2478/jee-2013-0002
Reference: [14] Jose, A., Augustine, C., Malola, S. M., Chacko, K.: Performance study of PID controller and LQR technique for inverted pendulum..World J. Engrg. Technol. 3 (2015), 76-81. 10.4236/wjet.2015.32008
Reference: [15] Kchaou, A., Naamane, A., Koubaa, Y., M'sirdi, N.: Second order sliding mode-based MPPT control for photovoltaic applications..Solar Energy 155 (2017), 758-769. 10.1016/j.solener.2017.07.007
Reference: [16] Kaynak, O., Erbatur, K., Ertugrul, M.: The fusion of computationally intelligent methodologies and sliding mode control-A survey..IEEE Trans. Industr. Electron. 48 (2001), 4-17. 10.1109/41.904539
Reference: [17] Kurode, S., Chalanga, A., Bandyopadhyay, B.: Swing-up and stabilization of rotary inverted pendulum using sliding modes..In: Preprints of the 18th IFAC World Congress, Milano 2011. 10.3182/20110828-6-it-1002.02933
Reference: [18] Khanesar, M. A., Teshnehlab, M., Shoorehdeli, M. A.: Fuzzy sliding mode control of rotary inverted pendulum..In: Proc. 5th IEEE International Conference on Computational Cybernetics, Tunisia 2007. 10.1109/icccyb.2007.4402019
Reference: [19] Khanesar, M. A., Teshnehlab, M., Shoorehdeli, M. A.: Sliding mode control of rotary inverted pendulum..In: Proc. 15th Mediterannean Conference on Control and Automation, Greece 2007. 10.1109/med.2007.4433653
Reference: [20] Liu, X., Vargas, A. N., Yu, X., Xu, L.: Stabilizing two-dimensional stochastic systems through sliding mode control..J. Franklin Inst. 354 (2017), 5813-5824. MR 3692085, 10.1016/j.jfranklin.2017.07.015
Reference: [21] Lu, B., Fang, Y., Sun, N.: Sliding mode control for underactuated overhead cranes suffering from both matched and unmatched disturbances..Mechatronics 47 (2017), 116-125. 10.1016/j.mechatronics.2017.09.006
Reference: [22] Lin, X., Nie, J., Jiao, Y., Liang, K., Li, H.: Adaptive fuzzy output feedback stabilization control for the underactuated surface vessel..Appl. Ocean Res. 74 (2018), 40-48. 10.1016/j.apor.2018.01.015
Reference: [23] Lo, J. C., Kuo, Y. H.: Decoupled fuzzy sliding-mode control..IEEE Trans. Fuzzy Systems 6 (1998), 426-435. 10.1109/91.705510
Reference: [24] Muskinja, N., Tovornik, B.: Swinging up and stabilization of a real inverted pendulum..IEEE Trans. Industr. Electron. 53 (2006), 631-639. 10.1109/tie.2006.870667
Reference: [25] Mei, H., He, Z.: Study on stability control for single link rotary inverted pendulum..In: Proc. International Conference on Mechanic Automation and Control Engineering, Wuhan 2010. 10.1109/mace.2010.5536653
Reference: [26] Mon, Y. J., Lin, C. M.: Hierarchical fuzzy sliding-mode control..In: Proc. IEEE International Conference on Fuzzy Systems, Greece 2002. 10.1109/fuzz.2002.1005070
Reference: [27] Ngo, Q. H., Nguyen, N. P., Nguyen, C. N., Tran, T. H., Ha, Q. P.: Fuzzy sliding mode control of an offshore container crane..Ocean Engrg. 140 (2017), 125-134. 10.1016/j.oceaneng.2017.05.019
Reference: [28] Nagarale, R., Patre, B.: Decoupled neural fuzzy sliding mode control of nonlinear systems..In: IEEE International Conference on Fuzzy Systems, Hyderabad 2013. 10.1109/fuzz-ieee.2013.6622321
Reference: [29] Oltean, S. E.: Swing-up and stabilization of the rotational inverted pendulum using PD and fuzzy-PD controllers..Procedia Technol. 12 (2014), 57-64. 10.1016/j.protcy.2013.12.456
Reference: [30] Phuong, N., Loc, H., Tuan, T.: Control of two wheeled inverted pendulum using sliding mode technique..Int. J. Engrg. Res. Appl. 3 (2013), 1276-1282.
Reference: [31] Perruquetti, W., Barbot, J. P.: Sliding Mode Control in Engineering..CRC Press, 2002. 10.1201/9780203910856
Reference: [32] Qian, D., Yi, J.: Hierarchical Sliding Mode Control for Under-actuated Cranes..Springer-Verlag, Berlin 2015. MR 3408614, 10.1007/978-3-662-48417-3
Reference: [33] Qureshi, M. S., Swarnkar, P., Gupta, S.: A supervisory on-line tuned fuzzy logic based sliding mode control for robotics: An application to surgical robots..Robotics Autonom. Systems 109 (2018), 68-85. 10.1016/j.robot.2018.08.008
Reference: [34] Qian, D., Yi, J., Zhao, D.: Hierarchical sliding mode control for a class of simo under-actuated systems..Control Cybernet. 37 (2008), 159-175. MR 2440728
Reference: [35] Qian, D., Yi, J., Zhao, D., Hao, Y.: Hierarchical sliding mode control for series double inverted pendulums system..In: Proc. International Conference on Intelligent Robots and Systems, Beijing 2006. 10.1109/iros.2006.282521
Reference: [36] Song, Z., Sun, K., Ling, S.: Stabilization and synchronization for a mechanical system via adaptive sliding mode control..ISA Trans. 68 (2017), 353-366. 10.1016/j.isatra.2017.02.013
Reference: [37] Solanes, J. E., Gracia, L., Munoz-Benavent, P., Miro, J. V., Girbes, V., Tornero, J.: Human-robot cooperation for robust surface treatment using non-conventional sliding mode control..ISA Trans. 80 (2018), 528-541. 10.1016/j.isatra.2018.05.013
Reference: [38] Slotine, J. J. E.: Sliding controller design for nonlinear systems..Int. J. Control 40 (1984), 421-434. 10.1080/00207178408933284
Reference: [39] Sirisha, V., Junghare, A. S.: A comparative study of controllers for stabilizing a rotary inverted pendulum..Int. J. Chaos, Control, Modell. Simul. 3 (2014), 1-13. 10.5121/ijccms.2014.3201
Reference: [40] Slotine, J. J. E., Li, W.: Applied Nonlinear Control..Prentice Hall International Inc., 1991. Zbl 0753.93036
Reference: [41] Tapia, A., Bernal, M., Fridman, L.: Nonlinear sliding mode control design: An LMI approach..Systems Control Lett. 104 (2017), 38-44. MR 3652391, 10.1016/j.sysconle.2017.03.011
Reference: [42] Tuan, L. A., Lee, S. G., Nho, L. C., Cuong, H. M.: Robust controls for ship-mounted container cranes with viscoelastic foundation and flexible hoisting cable..Proc. Inst. Mechan. Engineers, Part I: J. Systems Control Engrg. 229 (2015), 662-674. 10.1177/0959651815573903
Reference: [43] Tuan, L. A., Cuong, H. M., Lee, S. G., Nho, L. C., Moon, K.: Nonlinear feedback control of container crane mounted on elastic foundation with the flexibility of suspended cable..J. Vibration Control 22 (2016), 3067-3078. MR 3527669, 10.1177/1077546314558499
Reference: [44] Utkin, V. I., Korovin, S. K.: Application of sliding mode to static optimization..Automatic Remote Control 4 (1972), 570-579. MR 0738683
Reference: [45] Utkin, V. I., Yagn, K. D.: Methods for construction of discontinuity planes in multidimensional variable structure systems..Automat. Remote Control 39 (1978), 72-77. MR 0533368
Reference: [46] Utkin, V. I., Yagn, K. D.: Variable structure systems with sliding modes..IEEE Trans. Automat. Control 22 (1997), 212-222. MR 0484664, 10.1109/tac.1977.1101446
Reference: [47] Utkin, V. I., Guldner, J., Shi, J.: Sliding Mode Control in Electro-Mechanical Systems..CRC Press, 2009. MR 2455618, 10.1201/9781420065619
Reference: [48] Wu, Y. J., Li, G. F.: Adaptive disturbance compensation finite control set optimal control for PMSM systems based on sliding mode extended state observer..Mechan. Systems Signal Process. 98 (2018), 402-414. 10.1016/j.ymssp.2017.05.007
Reference: [49] Wu, A., Zhang, X., Zhang, Z.: A control system based on the Lagrange modeling method for a single link rotary inverted pendulum..Engrg. Sci. 7 (2005), 11-15.
Reference: [50] Wen, J., Shi, Y., Lu, X.: Stabilizing a rotary inverted pendulum based on logarithmic Lyapunov function..J. Control Science Engrg. 2017 (2017), 1-11. MR 3622180, 10.1155/2017/4091302
Reference: [51] Yigit, I.: Model free sliding mode stabilizing control of a real rotary inverted pendulum..J. Vibration Control 23 (2017), 1645-1662. MR 3659607, 10.1177/1077546315598031
Reference: [52] Yue, M., An, C., Du, Y., Sun, J.: Indirect adaptive fuzzy control for a nonholonomic/underactuated wheeled inverted pendulum vehicle based on a data-driven trajectory planner..Fuzzy Sets Systems 290 (2016), 158-177. MR 3460256, 10.1016/j.fss.2015.08.013
Reference: [53] Zhang, J., Zhang, Q., Wang, Y.: A new design of sliding mode control for Markovian jump systems based on stochastic sliding surface..Inform. Sci. 391 (2017), 9-27. 10.1016/j.ins.2017.02.005
Reference: [54] Zhao, Y., Huang, P., Zhang, F.: Dynamic modeling and super-twisting sliding mode control for tethered space robot..Acta Astronautica 143 (2018), 310-321. 10.1016/j.actaastro.2017.11.025
.

Files

Files Size Format View
Kybernetika_55-2019-3_2.pdf 3.366Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo