Previous |  Up |  Next

Article

Title: On a decomposition of non-negative Radon measures (English)
Author: Kpata, Bérenger Akon
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 55
Issue: 4
Year: 2019
Pages: 203-210
Summary lang: English
.
Category: math
.
Summary: We establish a decomposition of non-negative Radon measures on $\mathbb{R}^{d}$ which extends that obtained by Strichartz [6] in the setting of $\alpha $-dimensional measures. As consequences, we deduce some well-known properties concerning the density of non-negative Radon measures. Furthermore, some properties of non-negative Radon measures having their Riesz potential in a Lebesgue space are obtained. (English)
Keyword: Bessel capacity
Keyword: fractional maximal operator
Keyword: Hausdorff measure
Keyword: non-negative Radon measure
Keyword: Riesz potential
MSC: 28A12
MSC: 28A33
MSC: 28A78
MSC: 42B25
idZBL: Zbl 07144735
idMR: MR4038355
DOI: 10.5817/AM2019-4-203
.
Date available: 2019-10-30T08:49:50Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147872
.
Reference: [1] Adams, D.R., Hedberg, L.I.: Function spaces and potential theory.Grundlehren der mathematischen Wissenschaften, vol. 314, Springer-Verlag, London-Berlin-Heidelberg-New York, 1996. MR 1411441
Reference: [2] Dal Maso, G.: On the integral representation of certain local functionals.Ric. Mat. 32 (1) (1983), 85–113. MR 0740203
Reference: [3] Falconner, K.J.: Fractal geometry.Wiley, New York, 1990. MR 1102677
Reference: [4] Molter, U.M., Zuberman, L.: A fractal Plancherel theorem.Real Anal. Exchange 34 (1) (2008/2009), 69–86. MR 2527123, 10.14321/realanalexch.34.1.0069
Reference: [5] Phuc, N.C., Torrès, M.: Characterizations of the existence and removable singularities of divergence-measure vector fields.Indiana Univ. Math. J. 57 (4) (2008), 1573–1597. MR 2440874, 10.1512/iumj.2008.57.3312
Reference: [6] Strichartz, R.S.: Fourier asymptotics of fractal measures.J. Funct. Anal. 89 (1990), 154–187. MR 1040961, 10.1016/0022-1236(90)90009-A
Reference: [7] Véron, L.: Elliptic equations involving measures.Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 1, 2004, pp. 593–712. MR 2103694
Reference: [8] Ziemer, W.P.: Weakly Differentiable Functions.Springer-Verlag, New York, 1989. Zbl 0692.46022, MR 1014685
.

Files

Files Size Format View
ArchMathRetro_055-2019-4_1.pdf 489.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo