Previous |  Up |  Next

Article

Keywords:
amenability; Arens regularity; biprojectivity; biflatness; Lipschitz algebra; metric space
Summary:
Let $(X,d)$ be a metric space and $\alpha >0$. We study homological properties and different types of amenability of Lipschitz algebras $\operatorname{Lip}_\alpha X$ and their second duals. Precisely, we first provide some basic properties of Lipschitz algebras, which are important for metric geometry to know how metric properties are reflected in simple properties of Lipschitz functions. Then we show that all of these properties are equivalent to either uniform discreteness or finiteness of $X$. Finally, some results concerning the character space and Arens regularity of Lipschitz algebras are provided.
References:
[1] Abtahi, F., Azizi, M., Rejali, A.: Character amenability of some intersections of Lipschitz algebras. Canad. Math. Bull. 60 (4) (2017), 673–689. DOI 10.4153/CMB-2017-039-8 | MR 3710653
[2] Alaghmandan, M., Nasr Isfahani, R., Nemati, M.: On $\phi -$contractibility of the Lebesgue-Fourier algebra of a locally compact group. Arch. Math. (Basel) 95 (2010), 373–379. DOI 10.1007/s00013-010-0177-2 | MR 2727314
[3] Bade, W.G., Curtis, Jr., P.C., Dales, H.G.: Amenability and weak amenability for Beurling and Lipschitz algebras. Proc. London Math. Soc. 55 (2) (1987), 359–377. MR 0896225 | Zbl 0634.46042
[4] Dales, H.G.: Banach algebras and automatic continuity. London Math. Soc. Mono-graphs, vol. 24, Clarendon Press, Oxford, 2000. MR 1816726 | Zbl 0981.46043
[5] Dashti, M., Nasr Isfahani, R., Soltani Renani, S.: Character amenability of Lipschitz algebras. Canad. Math. Bull. 57 (1) (2014), 37–41. DOI 10.4153/CMB-2012-015-3 | MR 3150714
[6] Ghahramani, F., Zhang, Y.: Pseudo-amenable and pseudo-contractible Banach algebras. Math. Proc. Cambridge Philos. Soc. 142 (1) (2007), 111–123. DOI 10.1017/S0305004106009649 | MR 2296395
[7] Gourdeau, F.: Amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 105 (2) (1989), 351–355. DOI 10.1017/S0305004100067840 | MR 0974991
[8] Helemskii, A.Ya.: The homology of Banach and topological algebras. Kluwer Academic Publishers Group, Dordrecht, 1989. MR 1093462
[9] Hu, Z., Monfared, M.S., Traynor, T.: On character amenable Banach algebras. Studia Math. 193 (1) (2009), 53–78. DOI 10.4064/sm193-1-3 | MR 2506414
[10] Johnson, B.E.: Cohomology in Banach algebras. Mem. Amer. Math. Soc., vol. 127, 1972, pp. iii+96 pp. MR 0374934 | Zbl 0256.18014
[11] Johnson, J.A.: Banach spaces of Lipschitz functions and vector-valued Lipschitz functions. Trans. Amer. Math. Soc. 148 (1970), 147–169. DOI 10.1090/S0002-9947-1970-0415289-8 | MR 0415289
[12] Kaniuth, E.: A course in commutative Banach algebras. Graduate Texts in Mathematics, Springer, New York, 2009. MR 2458901
[13] Kaniuth, E., Lau, A.T., Pym, J.: On $\varphi -$amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 144 (1) (2008), 85–96. DOI 10.1017/S0305004107000874 | MR 2388235
[14] Loomis, L.H.: An introduction to abstract harmonic analysi. D. Van Nostrand Company, Inc., Toronto-New York-London, 1953. MR 0054173
[15] Monfared, M.S.: Character amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 144 (3) (2008), 697–706. DOI 10.1017/S0305004108001126 | MR 2418712
[16] Runde, V.: Lectures on amenability. Lecture Notes in Mathematics, vol. 1774, Springer-Verlag, Berlin, 2002. MR 1874893 | Zbl 0999.46022
[17] Samei, E., Spronk, N., Stokke, R.: Biflatness and pseudo-amenability of Segal algebras. Canad. J. Math. 62 4) (2010), 845–869. DOI 10.4153/CJM-2010-044-4 | MR 2674704
[18] Sherbert, D.R.: Banach algebras of Lipschitz functions. Pacific J. Math. 13 (1963), 1387–1399. DOI 10.2140/pjm.1963.13.1387 | MR 0156214 | Zbl 0121.10203
[19] Sherbert, D.R.: The structure of ideals and point derivations in Banach algebras of Lipschitz functions. Trans. Amer. Math. Soc. 111 (1964), 240–272. DOI 10.1090/S0002-9947-1964-0161177-1 | MR 0161177 | Zbl 0121.10204
[20] Zhang, Y.: Weak amenability of a class of Banach algebras. Canad. Math. Bull. 44 (4) (2001), 504–508. DOI 10.4153/CMB-2001-050-7 | MR 1863642 | Zbl 1156.46306
Partner of
EuDML logo