Previous |  Up |  Next

Article

Title: On hyponormal operators in Krein spaces (English)
Author: Esmeral, Kevin
Author: Ferrer, Osmin
Author: Jalk, Jorge
Author: Lora Castro, Boris
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 55
Issue: 4
Year: 2019
Pages: 249-259
Summary lang: English
.
Category: math
.
Summary: In this paper the hyponormal operators on Krein spaces are introduced. We state conditions for the hyponormality of bounded operators focusing, in particular, on those operators $T$ for which there exists a fundamental decomposition $\mathbb{K}= \mathbb{K}^{+} \oplus \mathbb{K}^{-}$ of the Krein space $\mathbb{K}$ with $\mathbb{K}^{+}$ and $\mathbb{K}^{-}$ invariant under $T$. (English)
Keyword: Hyponormal operators
Keyword: Krein spaces
Keyword: $J$-hyponormal operators
MSC: 46C20
MSC: 47B50
idZBL: Zbl 07144740
idMR: MR4038360
DOI: 10.5817/AM2019-4-249
.
Date available: 2019-10-30T08:55:55Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147878
.
Reference: [1] Andô, T.: On hyponormal operators.Proc. Amer. Math. Soc. 14 (1963), 290–291. MR 0145353, 10.2307/2034629
Reference: [2] Azizov, T.Ya., Iokhvidov, I.S.: Linear operator in spaces with an indefinite metric.Pure and Applied Mathematics, John Wiley $\&$ Sons, 1989. MR 1033489
Reference: [3] Berberian, S.K.: Introduction to Hilbert space.Oxford University Press, 1961. MR 0137976
Reference: [4] Bognar, J.: Indefinite inner product spaces.Springer, 1974. MR 0467261
Reference: [5] Braha, N.L., Lohaj, M., Marevci, F.H., Lohaj, Sh.: Some properties of paranormal and hyponormal operators.Bull. Math. Anal. Appl. 1 (2) (2009), 23–35. MR 2578108
Reference: [6] Cowen, C.C., Shaokuan, L.: Hilbert space operators that are subnormal in the Krein space sense.J. Operator Theory 20 (1988), 165–181. MR 0972187
Reference: [7] Esmeral, K., Ferrer, O., Castro, B. Lora: Dual and similar frames in Krein spaces.Int. J. Math. Anal. 19 (2016), 939–952. 10.12988/ijma.2016.6469
Reference: [8] Halmos, P.R.: Normal dilations and extensions of operators.Summa Brasil. Math. 2 (1950), 125–134. MR 0044036
Reference: [9] McEnnis, B.W.: Fundamental reducibility of selfadjoint operators on Krein space.J. Operator Theory 8 (1982), 219–225. MR 0677413
Reference: [10] Putnam, C.R.: On semi-normal operators.Pacific J. Math. 7 (1957), 1649–1652. MR 0093710, 10.2140/pjm.1957.7.1649
Reference: [11] Sheth, I.H.: On hyponormal operators.Proc. Amer. Math. Soc. 17 (1966), 998–1000. MR 0196498, 10.1090/S0002-9939-1966-0196498-7
Reference: [12] Stampfli, J.G.: Hyponormal operators.Pacific J. Math. 12 (1962), 1453–1458. MR 0149282, 10.2140/pjm.1962.12.1453
Reference: [13] Xia, D.: Spectral theory of hyponormal operators.Birkhäuser Verlag, 1983. MR 0806959
.

Files

Files Size Format View
ArchMathRetro_055-2019-4_6.pdf 518.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo