Previous |  Up |  Next

Article

Title: Admissible spaces for a first order differential equation with delayed argument (English)
Author: Chernyavskaya, Nina A.
Author: Dorel, Lela S.
Author: Shuster, Leonid A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 4
Year: 2019
Pages: 1069-1080
Summary lang: English
.
Category: math
.
Summary: We consider the equation $$ -y'(x)+q(x)y(x-\varphi (x))=f(x), \quad x \in \mathbb R, $$ where $\varphi $ and $q$ ($q \geq 1$) are positive continuous functions for all $ x\in \mathbb R $ and $f \in C(\mathbb R)$. By a solution of the equation we mean any function $y$, continuously differentiable everywhere in $\mathbb R$, which satisfies the equation for all $x \in \mathbb R$. We show that under certain additional conditions on the functions $\varphi $ and $q$, the above equation has a unique solution $y$, satisfying the inequality $$ \|y'\|_{C(\mathbb R)}+\|qy\|_{C(\mathbb R)}\leq c\|f\|_{C(\mathbb R)}, $$ where the constant $c\in (0,\infty )$ does not depend on the choice of $f$. (English)
Keyword: linear differential equation
Keyword: admissible pair
Keyword: delayed argument
MSC: 34A30
MSC: 34B05
MSC: 34B40
idZBL: 07144876
idMR: MR4039621
DOI: 10.21136/CMJ.2019.0062-18
.
Date available: 2019-11-28T08:51:30Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147915
.
Reference: [1] Azbelev, N. V., Kultyshev, S. Yu., Tsalynk, V. Z.: Functional Differential Equations and Variational Problems.R & C Dynamics, Moskva (2006), Russian. MR 1190052
Reference: [2] Chernyavskaya, N., Shuster, L.: Correct solvability of the Sturm-Liouville equation with delayed argument.J. Differ. Equations 261 (2016), 3247-3267. Zbl 1348.34118, MR 3527629, 10.1016/j.jde.2016.05.027
Reference: [3] El'sgol'ts, L. È., Norkin, S. B.: Introduction to the Theory of Differential Equations with Deviating Argument.Nauka, Moskva (1971), Russian. Zbl 0224.34053, MR 0352646
Reference: [4] Hale, J. K.: Theory of Functional Differential Equations.Applied Mathematical Sciences 3, Springer, New York (1977). Zbl 0352.34001, MR 0508721, 10.1007/978-1-4612-9892-2
Reference: [5] Massera, J. L., Schäffer, J. J.: Linear Differential Equations and Function Spaces.Pure and Applied Mathematics 21, Academic Press, New York (1966). Zbl 0243.34107, MR 0212324
Reference: [6] Myshkis, A. D.: Linear Differential Equations with Retarded Argument.Nauka, Moskva (1972), Russian. Zbl 0261.34040, MR 0352648
.

Files

Files Size Format View
CzechMathJ_69-2019-4_14.pdf 276.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo