[2] Badenjki, A.: The $P_NP_M$ DG Schemes for the One Dimensional Hyperbolic Conservation Laws. Doctoral Thesis, Otto-von-Guericke University, Magdeburg (2018).
[3] Cockburn, B.:
An introduction to the discontinuous Galerkin method for convection-dominated problems. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations A. Quarteroni et al. Lecture Notes in Mathematics 1697, Springer, Berlin (1998), 151-268.
DOI 10.1007/BFb0096353 |
MR 1728854 |
Zbl 0927.65120
[4] Cockburn, B., Shu, C.-W.:
TVB Runge Kutta local projection discontinuous Galerkin finite element method for conservation laws. II: General framework. Math. Comput. 52 (1989), 411-435.
DOI 10.2307/2008474 |
MR 0983311 |
Zbl 0662.65083
[5] Dumbser, M., Balsara, D. S., Toro, E. F., Munz, C.-D.:
A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227 (2008), 8209-8253.
DOI 10.1016/j.jcp.2008.05.025 |
MR 2446488 |
Zbl 1147.65075
[8] Hirsch, C.:
Numerical Computation of Internal and External Flows. Volume 1: Fundamentals of Numerical Discretization. Wiley Series in Numerical Methods in Engineering; Wiley, Chichester (1988).
Zbl 0662.76001
[9] Koornwinder, T. H., Wong, R., Koekoek, R., Swarttouw, R. F.:
Orthogonal polynomials. NIST Handbook of Mathematical Functions F. W. J. Olver et al. Cambridge University Press, Cambridge (2010), 435-484.
MR 2655358 |
Zbl 1198.00002
[10] Stegun, I. A.:
Legendre functions. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables M. Abramowitz, I. A. Stegun National Bureau of Standards Applied Mathematics Series 55, Government Printing Office, Washington (1970).
MR 0167642 |
Zbl 0171.38503
[11] Strang, G.:
Introduction to Linear Algebra. Wellesley-Cambridge Press, Wellesley (2003).
MR 3058665 |
Zbl 1046.15001