Previous |  Up |  Next

Article

Title: A note on discriminating Poisson processes from other point processes with stationary inter arrival times (English)
Author: Morvai, Gusztáv
Author: Weiss, Benjamin
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 5
Year: 2019
Pages: 802-808
Summary lang: English
.
Category: math
.
Summary: We give a universal discrimination procedure for determining if a sample point drawn from an ergodic and stationary simple point process on the line with finite intensity comes from a homogeneous Poisson process with an unknown parameter. Presented with the sample on the interval $[0,t]$ the discrimination procedure $g_t$, which is a function of the finite subsets of $[0,t]$, will almost surely eventually stabilize on either POISSON or NOTPOISSON with the first alternative occurring if and only if the process is indeed homogeneous Poisson. The procedure is based on a universal discrimination procedure for the independence of a discrete time series based on the observation of a sequence of outputs of this time series. (English)
Keyword: Point processes
MSC: 60G55
idZBL: Zbl 07177917
idMR: MR4055577
DOI: 10.14736/kyb-2019-5-0802
.
Date available: 2020-01-06T11:21:30Z
Last updated: 2020-11-23
Stable URL: http://hdl.handle.net/10338.dmlcz/147952
.
Reference: [1] Daley, D. J., Vere-Jones, D.: An introduction to the theory of point processes. Vol. II. General theory and structure. Second edition..In: Probability and its Applications. Springer, New York 2008. MR 2371524, 10.1007/978-0-387-49835-5
Reference: [2] Haywood, J., Khmaladze, E.: On distribution-free goodness-of-fit testing of exponentiality..J. Econometr. 143 (2008), 5-18. MR 2384430, 10.1016/j.jeconom.2007.08.005
Reference: [3] Kallenberg, O.: Foundations of modern probability. Second edition..In: Probability and its Applications. Springer-Verlag, New York 2002. MR 1876169, 10.1007/978-1-4757-4015-8
Reference: [4] Lewis, P. A. W.: Some results on tests for Poisson processes..Biometrika 52 (1965), 1 and 2, 67-77. MR 0207107, 10.1093/biomet/52.1-2.67
Reference: [5] Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality..Ann. Probab. 18 (1990), 3, 1269-1283. Zbl 0713.62021, MR 1062069, 10.1214/aop/1176990746
Reference: [6] Morvai, G., Weiss, B.: Testing stationary processes for independence..Ann. Inst. H. Poincare' Probab. Statist. 47 (2011), 4, 1219-1225. MR 2884232, 10.1214/11-aihp426
Reference: [7] Ryabko, B., Astola, J.: Universal codes as a basis for time series testing..Statist. Methodol. 3 (2006), 375-397. MR 2252392, 10.1016/j.stamet.2005.10.004
Reference: [8] Thorisson, H.: Coupling, stationarity, and regeneration..In: Probability and its Applications. Springer-Verlag, New York 2000. MR 1741181, 10.1007/978-1-4612-1236-2
.

Files

Files Size Format View
Kybernetika_55-2019-5_3.pdf 407.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo