Previous |  Up |  Next

Article

Title: Quotient structures in lattice effect algebras (English)
Author: Sharafi, Amir Hossein
Author: Borzooei, Rajb Ali
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 5
Year: 2019
Pages: 879-895
Summary lang: English
.
Category: math
.
Summary: In this paper, we define some types of filters in lattice effect algebras, investigate some relations between them and introduce some new examples of lattice effect algebras. Then by using the strong filter, we find a CI-lattice congruence on lattice effect algebras, such that the induced quotient structure of it is a lattice effect algebra, too. Finally, under some suitable conditions, we get a quotient MV-effect algebra and a quotient orthomodular lattice, by this congruence relation. (English)
Keyword: Lattice effect algebra
Keyword: CI-lattice
Keyword: Sasaki arrow
Keyword: (strong
Keyword: fantastic
Keyword: implicative
Keyword: positive implicative) filter
Keyword: Riesz ideal
Keyword: D-ideal
Keyword: MV-effect algebra
Keyword: orthomodular lattice
MSC: 06B10
MSC: 81R05
idZBL: Zbl 07177922
idMR: MR4055582
DOI: 10.14736/kyb-2019-5-0879
.
Date available: 2020-01-06T11:22:55Z
Last updated: 2020-11-23
Stable URL: http://hdl.handle.net/10338.dmlcz/147957
.
Reference: [1] Avallone, A., Vitolo, P.: Congruences and ideals of effect algebras..Kluwer Academic Publishers 20 (2003), 1, 67-77. MR 1993411, 10.1023/a:1024458125510
Reference: [2] Bennett, M. K., Foulis, D. J.: Phi-symmetric effect algebras..Found. Physics 25 (1995), 12, 1699-1722. MR 1377109, 10.1007/bf02057883
Reference: [3] Borzooei, R. A., Dvurečenskij, A., Sharafi, A. H.: Material implications in lattice effect algebras..Inform. Sci. 433-434 (2018), 233-240. MR 3759022, 10.1016/j.ins.2017.12.049
Reference: [4] Borzooei, R. A., Shoar, S. Khosravi, Ameri, R.: Some types of filters in MTL-algebras..Fuzzy Sets Systems 187 (2012), 1, 92-102. MR 2851998, 10.1016/j.fss.2011.09.001
Reference: [5] Chajda, I., Halaš, R., Kühr, J.: Many-valued quantum algebras..Algebra Univers. 60 (2009), 1, 63-90. MR 2480632, 10.1007/s00012-008-2086-9
Reference: [6] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures..Springer Netherlands, 2000. Zbl 0987.81005, MR 1861369, 10.1007/978-94-017-2422-7
Reference: [7] Farahani, H., Zahiri, O.: Algebraic view of MTL-filters..Ann. Univ. Craiova 40 (2013), 1, 34-44. MR 3078957
Reference: [8] Foulis, D. J.: MV and Hyting effect algebras..Found. Physics 30 (2000), 10, 1687-1706. MR 1810197, 10.1023/a:1026454318245
Reference: [9] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics..Found. Physics 24 (1994), 10, 1331-1352. Zbl 1213.06004, MR 1304942, 10.1007/bf02283036
Reference: [10] Foulis, D. J., Pulmannová, S.: Logical connectives on lattice effect algebras..Studia Logica 100 (2012), 6, 1291-1315. MR 3001058, 10.1007/s11225-012-9454-3
Reference: [11] Haveshki, M., Saeid, A. Borumand, Eslami, E.: Some types of filters in BL-algebras..Soft Computing 10 (2006), 8, 657-664. 10.1007/s00500-005-0534-4
Reference: [12] Jenča, G., Marinová, I., Riečanová, Z.: Central elements, blocks and sharp elements of lattice effect algebras..In: Proc. Third Seminar Fuzzy Sets and Quantum Structures 2002, pp. 28-33.
Reference: [13] Jenča, G., Pulmannová, S.: Ideals and quotients in lattice ordered effect algebras..Soft Computing 5 (2001), 5, 376-380. 10.1007/s005000100139
Reference: [14] Cignoli, R., D'Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning..Springer Science and Business Media, 2000. Zbl 0937.06009, MR 1786097, 10.1007/978-94-015-9480-6
Reference: [15] Pulmannová, S., Vinceková, E.: Congruences and ideals in lattice effect algebras as basic algebras..Kybernetika 45 (2009), 6, 1030-1039. MR 2650081
Reference: [16] Rad, S. Rafiee, Sharafi, A. H., Smets, S.: A Complete axiomatisation for the logic of lattice effect algebras..Int. J. Theoret. Physics (2019). 10.1007/s10773-019-04074-y
Reference: [17] Riečanová, Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras..Int. J. Theoret. Physics 39 (2000), 2, 231-237. MR 1762594, 10.1023/a:1003619806024
.

Files

Files Size Format View
Kybernetika_55-2019-5_8.pdf 472.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo