Title:
|
Order-enriched solid functors (English) |
Author:
|
Sousa, Lurdes |
Author:
|
Tholen, Walter |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
60 |
Issue:
|
4 |
Year:
|
2019 |
Pages:
|
553-580 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Order-enriched solid functors, as presented in this paper in two versions, enjoy many of the strong properties of their ordinary counterparts, including the transfer of the existence of weighted (co)limits from their codomains to their domains. The ordinary version of the notion first appeared in Trnková's work on automata theory of the 1970s and was subsequently studied by others under various names, before being put into a general enriched context by C. Anghel. Our focus in this paper is on differentiating the order-enriched notion from the ordinary one, mostly in terms of the functor's behaviour with respect to specific weighted (co)limits, and on the presentation of examples, which include functors of general varieties of ordered algebras and special ones, such as ordered vector spaces. (English) |
Keyword:
|
ordered category |
Keyword:
|
(strongly) order-solid functor |
Keyword:
|
weighted (co)limit |
Keyword:
|
ordered algebra |
MSC:
|
06F99 |
MSC:
|
18A22 |
MSC:
|
18A30 |
MSC:
|
18B35 |
idZBL:
|
Zbl 07177890 |
idMR:
|
MR4061363 |
DOI:
|
10.14712/1213-7243.2020.002 |
. |
Date available:
|
2020-02-10T16:50:28Z |
Last updated:
|
2022-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147969 |
. |
Reference:
|
[1] Adámek J., Herrlich H., Strecker G. E.: Abstract and Concrete Categories.Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, New York, 1990. MR 1051419 |
Reference:
|
[2] Adámek J., Rosický J., Vitale E. M.: Algebraic Theories.Cambridge Tracts in Mathematics, 184, Cambridge University Press, Cambridge, 2011. MR 2757312 |
Reference:
|
[3] Adámek J., Sousa L.: KZ-monadic categories and their logic.Theory Appl. Categ. 32 (2017), paper no. 10, 338–379. MR 3633707 |
Reference:
|
[4] Adámek J., Sousa L., Velebil J.: Kan injectivity in order-enriched categories.Math. Structures Comput. Sci. 25 (2015), no. 1, 6–45. MR 3283679, 10.1017/S0960129514000024 |
Reference:
|
[5] Anghel C.: Factorizations and Initiality in Enriched Categories.Doctoral Dissertation, Fernuniversität, Hagen, 1987. |
Reference:
|
[6] Anghel C.: Semi-initial and semi-final $V$-functors.Comm. Algebra 18 (1990), no. 1, 135–181. MR 1037900, 10.1080/00927879008823905 |
Reference:
|
[7] Anghel C.: Lifting properties of $V$-functors.Comm. Algebra 18 (1990), no. 1, 183–192. MR 1037901, 10.1080/00927879008823906 |
Reference:
|
[8] Antoine P.: Étude élémentaire des catégories d'ensembles structurés.Bull. Soc. Math. Belg. 18 (1966), 142–164, 387–414 (French). MR 0200321 |
Reference:
|
[9] Börger R., Tholen W.: Cantors Diagonalprinzip für Kategorien.Math. Z. 160 (1978), no. 2, 135–138 (German). MR 0498772, 10.1007/BF01214264 |
Reference:
|
[10] Börger R., Tholen W.: Total categories and solid functors.Canad. J. Math. 42 (1990), no. 2, 213–229. MR 1051726, 10.4153/CJM-1990-012-x |
Reference:
|
[11] Brümmer G. C. L.: A Categorical Study of Initiality in Uniform Topology.Ph.D. Thesis, University of Cape Town, Cape Town, 1971. |
Reference:
|
[12] Carvalho M., Sousa L.: Order-preserving reflectors and injectivity.Topology Appl. 158 (2011), no. 17, 2408–2422. MR 2838390, 10.1016/j.topol.2010.12.016 |
Reference:
|
[13] Carvalho M., Sousa L.: On Kan-injectivity of locales and spaces.Appl. Categorical Structures 25 (2017), no. 1, 83–104. MR 3606496, 10.1007/s10485-015-9413-z |
Reference:
|
[14] Čech E.: Topological Spaces.Academia, Prague, 1966. |
Reference:
|
[15] Dubuc E.: Adjoint triangles.Reports of the Midwest Category Seminar, Springer, Berlin, 1968, pages 69–91. MR 0233864 |
Reference:
|
[16] Fritz T.: Resource convertibility and ordered commutative monoids.Math. Structures Comput. Sci. 27 (2017), no. 6, 850–938. MR 3683631, 10.1017/S0960129515000444 |
Reference:
|
[17] Herrlich H.: Topological functors.General Topology and Appl. 4 (1974), 125–142. MR 0343226, 10.1016/0016-660X(74)90016-6 |
Reference:
|
[18] Hoffmann R.-E.: Die kategorielle Auffassung der Initial- und Finaltopologie.Doctoral Dissertation, Ruhr-Universität, Bochum, 1972 (German). |
Reference:
|
[19] Hoffmann R.-E.: Semi-identifying lifts and a generalization of the dual theorem for topological functors.Math. Nachr. 74 (1976), 295–307. MR 0428256, 10.1002/mana.3210740124 |
Reference:
|
[20] Hofmann D. (ed.), Seal G. J. (ed.), Tholen W. (ed.): Monoidal Topology.Encyclopedia of Mathematics and Its Applications, 153, Cambridge University Press, Cambridge, 2014. MR 3307673 |
Reference:
|
[21] Hofmann D., Sousa L.: Aspects of algebraic algebras.Log. Methods Comput. Sci. 13 (2017), no. 3, paper no. 4, 25 pages. MR 3673245 |
Reference:
|
[22] Hong Y. H.: Studies on Categories of Universal Topological Algebras.Ph.D. Thesis, McMaster University, Hamilton, 1974. MR 2702868 |
Reference:
|
[23] Hušek M.: $S$-categories.Comment. Math. Univ. Carolinae 5 (1964), 37–46. MR 0174027 |
Reference:
|
[24] Jameson G.: Ordered Linear Spaces.Lecture Notes in Mathematics, 141, Springer, Berlin, 1970. MR 0438077 |
Reference:
|
[25] Kelly G. M.: Basic Concepts of Enriched Category Theory.London Mathematical Society Lecture Note Series, 64, Cambridge University Press, Cambridge, 1982. Zbl 1086.18001, MR 0651714 |
Reference:
|
[26] Kurz A., Velebil J.: Quasivarieties and varieties of ordered algebras: regularity and exactness.Math. Structures Comput. Sci. 27 (2017), no. 7, 1153–1194. MR 3705669, 10.1017/S096012951500050X |
Reference:
|
[27] Lawvere F. W.: Functorial Semantics of Algebraic Theories.Ph.D. Thesis, Columbia University, New York, 1963. MR 2939398 |
Reference:
|
[28] Linton F. E. J.: Some aspects of equational categories.Proc. of the Conf. Categorical Algebra, La Jolla, 1965, Springer, New York, 1966, pages 84–94. MR 0209335 |
Reference:
|
[29] MacLane S.: Categories for the Working Mathematician.Graduate Texts in Mathematics, 5, Springer, Berlin, 1971. Zbl 0705.18001, MR 0354798 |
Reference:
|
[30] Manes E. G.: A pullback theorem for triples in a lattice fibering with applications to algebra and analysis.Algebra Universalis 2 (1972), 7–17. MR 0311741, 10.1007/BF02945002 |
Reference:
|
[31] Picado J., Pultr A.: Frames and Locales: Topology without Points.Frontiers in Mathematics, Birkhäuser/Springer Basel AG, Basel, 2012. MR 2868166 |
Reference:
|
[32] Roberts J. E.: A characterization of initial functors.J. Algebra 8 (1968), 181–193. MR 0224674, 10.1016/0021-8693(68)90044-6 |
Reference:
|
[33] Schaefer H. H.: Topological Vector Spaces.Graduate Texts in Mathematics, 3, Springer, New York, 1971. Zbl 0983.46002, MR 0342978 |
Reference:
|
[34] Shukla W.: On Top Categories.Ph.D. Thesis, Indian Institute of Technology, Kanpur, 1971. |
Reference:
|
[35] Sousa L.: Solid hulls of concrete categories.Appl. Categ. Structures 3 (1995), no. 2, 105–118. MR 1329186, 10.1007/BF00877631 |
Reference:
|
[36] Sousa L.: A calculus of lax fractions.J. Pure Appl. Algebra 221 (2017), no. 2, 422–448. MR 3545270, 10.1016/j.jpaa.2016.07.002 |
Reference:
|
[37] Street R., Tholen W., Wischnewsky M., Wolff H.: Semitopological functors. III. Lifting of monads and adjoint functors.J. Pure Appl. Algebra 16 (1980), no. 3, 299–314. MR 0558494, 10.1016/0022-4049(80)90035-3 |
Reference:
|
[38] Taylor J. C.: Weak families of maps.Canad. Math. Bull. 8 (1965), 771–781. MR 0212069, 10.4153/CMB-1965-057-7 |
Reference:
|
[39] Tholen W.: $M$-functors.Nordwestdeutsches Kategorienseminar, Tagung, Bremen, 1976, Math.-Arbeitspapiere, No. 7, Teil A: Math. Forschungspapiere, Universität Bremen, Bremen, 1976, pages 178–185. MR 0486037 |
Reference:
|
[40] Tholen W.: On Wyler's taut lift theorem.General Topology and Appl. 8 (1978), no. 2, 197–206. MR 0480669, 10.1016/0016-660X(78)90050-8 |
Reference:
|
[41] Tholen W.: Semitopological functors I.J. Pure Appl. Algebra 15 (1979), no. 1, 53–73. MR 0532963, 10.1016/0022-4049(79)90040-9 |
Reference:
|
[42] Tholen W.: Note on total categories.Bull. Austral. Math. Soc. 21 (1980), no. 2, 169–173. MR 0574836, 10.1017/S0004972700005992 |
Reference:
|
[43] Tholen W., Wischnewsky M. B.: Semitopological functors. II. External characterizations.J. Pure Appl. Algebra 15 (1979), no. 1, 75–92. MR 0532964, 10.1016/0022-4049(79)90041-0 |
Reference:
|
[44] Trnková V.: Automata and categories.Mathematical Foundations of Computer Science 1975, Fourth Sympos., Mariánské Lázně, 1975, Lecture Notes in Computer Science, 32, Springer, Berlin, 1975, 138–152. MR 0393175, 10.1007/3-540-07389-2_188 |
Reference:
|
[45] Wischnewsky M. B.: Partielle Algebren in Initialkategorien.Math. Z. 127 (1972), 83–91 (German). MR 0308238, 10.1007/BF01110107 |
Reference:
|
[46] Wischnewsky M. B.: A lifting theorem for right adjoints.Cahiers Topologie Géom. Differentielle 19 (1978), no. 2, 155–168. MR 0528344 |
Reference:
|
[47] Wyler O.: On the categories of general topology and topological algebra.Arch. Math. (Basel) 22 (1971), 7–17. MR 0287563, 10.1007/BF01222531 |
Reference:
|
[48] Wyler O.: Top categories and categorical topology.General Topology and Appl. 1 (1971), no. 1, 17–28. MR 0282324, 10.1016/0016-660X(71)90106-1 |
. |