Previous |  Up |  Next

Article

Title: Order-enriched solid functors (English)
Author: Sousa, Lurdes
Author: Tholen, Walter
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 4
Year: 2019
Pages: 553-580
Summary lang: English
.
Category: math
.
Summary: Order-enriched solid functors, as presented in this paper in two versions, enjoy many of the strong properties of their ordinary counterparts, including the transfer of the existence of weighted (co)limits from their codomains to their domains. The ordinary version of the notion first appeared in Trnková's work on automata theory of the 1970s and was subsequently studied by others under various names, before being put into a general enriched context by C. Anghel. Our focus in this paper is on differentiating the order-enriched notion from the ordinary one, mostly in terms of the functor's behaviour with respect to specific weighted (co)limits, and on the presentation of examples, which include functors of general varieties of ordered algebras and special ones, such as ordered vector spaces. (English)
Keyword: ordered category
Keyword: (strongly) order-solid functor
Keyword: weighted (co)limit
Keyword: ordered algebra
MSC: 06F99
MSC: 18A22
MSC: 18A30
MSC: 18B35
idZBL: Zbl 07177890
idMR: MR4061363
DOI: 10.14712/1213-7243.2020.002
.
Date available: 2020-02-10T16:50:28Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147969
.
Reference: [1] Adámek J., Herrlich H., Strecker G. E.: Abstract and Concrete Categories.Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, New York, 1990. MR 1051419
Reference: [2] Adámek J., Rosický J., Vitale E. M.: Algebraic Theories.Cambridge Tracts in Mathematics, 184, Cambridge University Press, Cambridge, 2011. MR 2757312
Reference: [3] Adámek J., Sousa L.: KZ-monadic categories and their logic.Theory Appl. Categ. 32 (2017), paper no. 10, 338–379. MR 3633707
Reference: [4] Adámek J., Sousa L., Velebil J.: Kan injectivity in order-enriched categories.Math. Structures Comput. Sci. 25 (2015), no. 1, 6–45. MR 3283679, 10.1017/S0960129514000024
Reference: [5] Anghel C.: Factorizations and Initiality in Enriched Categories.Doctoral Dissertation, Fernuniversität, Hagen, 1987.
Reference: [6] Anghel C.: Semi-initial and semi-final $V$-functors.Comm. Algebra 18 (1990), no. 1, 135–181. MR 1037900, 10.1080/00927879008823905
Reference: [7] Anghel C.: Lifting properties of $V$-functors.Comm. Algebra 18 (1990), no. 1, 183–192. MR 1037901, 10.1080/00927879008823906
Reference: [8] Antoine P.: Étude élémentaire des catégories d'ensembles structurés.Bull. Soc. Math. Belg. 18 (1966), 142–164, 387–414 (French). MR 0200321
Reference: [9] Börger R., Tholen W.: Cantors Diagonalprinzip für Kategorien.Math. Z. 160 (1978), no. 2, 135–138 (German). MR 0498772, 10.1007/BF01214264
Reference: [10] Börger R., Tholen W.: Total categories and solid functors.Canad. J. Math. 42 (1990), no. 2, 213–229. MR 1051726, 10.4153/CJM-1990-012-x
Reference: [11] Brümmer G. C. L.: A Categorical Study of Initiality in Uniform Topology.Ph.D. Thesis, University of Cape Town, Cape Town, 1971.
Reference: [12] Carvalho M., Sousa L.: Order-preserving reflectors and injectivity.Topology Appl. 158 (2011), no. 17, 2408–2422. MR 2838390, 10.1016/j.topol.2010.12.016
Reference: [13] Carvalho M., Sousa L.: On Kan-injectivity of locales and spaces.Appl. Categorical Structures 25 (2017), no. 1, 83–104. MR 3606496, 10.1007/s10485-015-9413-z
Reference: [14] Čech E.: Topological Spaces.Academia, Prague, 1966.
Reference: [15] Dubuc E.: Adjoint triangles.Reports of the Midwest Category Seminar, Springer, Berlin, 1968, pages 69–91. MR 0233864
Reference: [16] Fritz T.: Resource convertibility and ordered commutative monoids.Math. Structures Comput. Sci. 27 (2017), no. 6, 850–938. MR 3683631, 10.1017/S0960129515000444
Reference: [17] Herrlich H.: Topological functors.General Topology and Appl. 4 (1974), 125–142. MR 0343226, 10.1016/0016-660X(74)90016-6
Reference: [18] Hoffmann R.-E.: Die kategorielle Auffassung der Initial- und Finaltopologie.Doctoral Dissertation, Ruhr-Universität, Bochum, 1972 (German).
Reference: [19] Hoffmann R.-E.: Semi-identifying lifts and a generalization of the dual theorem for topological functors.Math. Nachr. 74 (1976), 295–307. MR 0428256, 10.1002/mana.3210740124
Reference: [20] Hofmann D. (ed.), Seal G. J. (ed.), Tholen W. (ed.): Monoidal Topology.Encyclopedia of Mathematics and Its Applications, 153, Cambridge University Press, Cambridge, 2014. MR 3307673
Reference: [21] Hofmann D., Sousa L.: Aspects of algebraic algebras.Log. Methods Comput. Sci. 13 (2017), no. 3, paper no. 4, 25 pages. MR 3673245
Reference: [22] Hong Y. H.: Studies on Categories of Universal Topological Algebras.Ph.D. Thesis, McMaster University, Hamilton, 1974. MR 2702868
Reference: [23] Hušek M.: $S$-categories.Comment. Math. Univ. Carolinae 5 (1964), 37–46. MR 0174027
Reference: [24] Jameson G.: Ordered Linear Spaces.Lecture Notes in Mathematics, 141, Springer, Berlin, 1970. MR 0438077
Reference: [25] Kelly G. M.: Basic Concepts of Enriched Category Theory.London Mathematical Society Lecture Note Series, 64, Cambridge University Press, Cambridge, 1982. Zbl 1086.18001, MR 0651714
Reference: [26] Kurz A., Velebil J.: Quasivarieties and varieties of ordered algebras: regularity and exactness.Math. Structures Comput. Sci. 27 (2017), no. 7, 1153–1194. MR 3705669, 10.1017/S096012951500050X
Reference: [27] Lawvere F. W.: Functorial Semantics of Algebraic Theories.Ph.D. Thesis, Columbia University, New York, 1963. MR 2939398
Reference: [28] Linton F. E. J.: Some aspects of equational categories.Proc. of the Conf. Categorical Algebra, La Jolla, 1965, Springer, New York, 1966, pages 84–94. MR 0209335
Reference: [29] MacLane S.: Categories for the Working Mathematician.Graduate Texts in Mathematics, 5, Springer, Berlin, 1971. Zbl 0705.18001, MR 0354798
Reference: [30] Manes E. G.: A pullback theorem for triples in a lattice fibering with applications to algebra and analysis.Algebra Universalis 2 (1972), 7–17. MR 0311741, 10.1007/BF02945002
Reference: [31] Picado J., Pultr A.: Frames and Locales: Topology without Points.Frontiers in Mathematics, Birkhäuser/Springer Basel AG, Basel, 2012. MR 2868166
Reference: [32] Roberts J. E.: A characterization of initial functors.J. Algebra 8 (1968), 181–193. MR 0224674, 10.1016/0021-8693(68)90044-6
Reference: [33] Schaefer H. H.: Topological Vector Spaces.Graduate Texts in Mathematics, 3, Springer, New York, 1971. Zbl 0983.46002, MR 0342978
Reference: [34] Shukla W.: On Top Categories.Ph.D. Thesis, Indian Institute of Technology, Kanpur, 1971.
Reference: [35] Sousa L.: Solid hulls of concrete categories.Appl. Categ. Structures 3 (1995), no. 2, 105–118. MR 1329186, 10.1007/BF00877631
Reference: [36] Sousa L.: A calculus of lax fractions.J. Pure Appl. Algebra 221 (2017), no. 2, 422–448. MR 3545270, 10.1016/j.jpaa.2016.07.002
Reference: [37] Street R., Tholen W., Wischnewsky M., Wolff H.: Semitopological functors. III. Lifting of monads and adjoint functors.J. Pure Appl. Algebra 16 (1980), no. 3, 299–314. MR 0558494, 10.1016/0022-4049(80)90035-3
Reference: [38] Taylor J. C.: Weak families of maps.Canad. Math. Bull. 8 (1965), 771–781. MR 0212069, 10.4153/CMB-1965-057-7
Reference: [39] Tholen W.: $M$-functors.Nordwestdeutsches Kategorienseminar, Tagung, Bremen, 1976, Math.-Arbeitspapiere, No. 7, Teil A: Math. Forschungspapiere, Universität Bremen, Bremen, 1976, pages 178–185. MR 0486037
Reference: [40] Tholen W.: On Wyler's taut lift theorem.General Topology and Appl. 8 (1978), no. 2, 197–206. MR 0480669, 10.1016/0016-660X(78)90050-8
Reference: [41] Tholen W.: Semitopological functors I.J. Pure Appl. Algebra 15 (1979), no. 1, 53–73. MR 0532963, 10.1016/0022-4049(79)90040-9
Reference: [42] Tholen W.: Note on total categories.Bull. Austral. Math. Soc. 21 (1980), no. 2, 169–173. MR 0574836, 10.1017/S0004972700005992
Reference: [43] Tholen W., Wischnewsky M. B.: Semitopological functors. II. External characterizations.J. Pure Appl. Algebra 15 (1979), no. 1, 75–92. MR 0532964, 10.1016/0022-4049(79)90041-0
Reference: [44] Trnková V.: Automata and categories.Mathematical Foundations of Computer Science 1975, Fourth Sympos., Mariánské Lázně, 1975, Lecture Notes in Computer Science, 32, Springer, Berlin, 1975, 138–152. MR 0393175, 10.1007/3-540-07389-2_188
Reference: [45] Wischnewsky M. B.: Partielle Algebren in Initialkategorien.Math. Z. 127 (1972), 83–91 (German). MR 0308238, 10.1007/BF01110107
Reference: [46] Wischnewsky M. B.: A lifting theorem for right adjoints.Cahiers Topologie Géom. Differentielle 19 (1978), no. 2, 155–168. MR 0528344
Reference: [47] Wyler O.: On the categories of general topology and topological algebra.Arch. Math. (Basel) 22 (1971), 7–17. MR 0287563, 10.1007/BF01222531
Reference: [48] Wyler O.: Top categories and categorical topology.General Topology and Appl. 1 (1971), no. 1, 17–28. MR 0282324, 10.1016/0016-660X(71)90106-1
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-4_10.pdf 453.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo