| Title: | Unit-regularity and representability for semiartinian $*$-regular rings (English) | 
| Author: | Herrmann, Christian | 
| Language: | English | 
| Journal: | Archivum Mathematicum | 
| ISSN: | 0044-8753 (print) | 
| ISSN: | 1212-5059 (online) | 
| Volume: | 56 | 
| Issue: | 1 | 
| Year: | 2020 | 
| Pages: | 43-47 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | We show that any semiartinian $*$-regular ring $R$ is unit-regular; if, in addition, $R$ is subdirectly irreducible then it admits a representation within some inner product space. (English) | 
| Keyword: | $*$-regular ring | 
| Keyword: | representable | 
| Keyword: | unit-regular | 
| MSC: | 16E50 | 
| MSC: | 16W10 | 
| idZBL: | Zbl 07177879 | 
| idMR: | MR4075887 | 
| DOI: | 10.5817/AM2020-1-43 | 
| . | 
| Date available: | 2020-03-02T09:07:58Z | 
| Last updated: | 2020-08-26 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/148035 | 
| . | 
| Reference: | [1] Baccella, G., Spinosa, L.: $K_0$ of semiartinian von Neumann regular rings. Direct finiteness versusunit-regularity.Algebr. Represent. Theory 20 (2017), 1189–1213. MR 3707911, 10.1007/s10468-017-9682-3 | 
| Reference: | [2] Berberian, S.K.: Baer *-rings.Springer, Grundlehren 195, Berlin, 1972. MR 0429975 | 
| Reference: | [3] Goodearl, K.R.: Von Neumann Regular Rings.2nd ed., Krieger, Malabar, 1991. MR 1150975 | 
| Reference: | [4] Gross, H.: Quadratic Forms in Infinite Dimensional Vector spaces.Birkhäuser, Basel, 1979. MR 0537283 | 
| Reference: | [5] Handelman, D.: Finite Rickart C$^*$-algebras and their properties.Adv. in Math. Suppl. Stud., vol. 4, Academic Press, New York-London, Studies in analysis ed., 1979, pp. 171–196. MR 0546806 | 
| Reference: | [6] Herrmann, C.: Varieties of $*$-regular rings.http://arxiv.org/abs/1904.04505. | 
| Reference: | [7] Herrmann, C.: On the equational theory of projection lattices of finitevon Neumann factors.J. Symbolic Logic 75 (3) (2010), 1102–1110. MR 2723786, 10.2178/jsl/1278682219 | 
| Reference: | [8] Herrmann, C.: Direct finiteness of representable regular $*$-rings.Algebra Universalis 80 (1) (2019), 5 pp., http://arxiv.org/abs/1904.04505. MR 3904443 | 
| Reference: | [9] Herrmann, C., Semenova, M.V.: Rings of quotients of finite AW$^*$-algebras. Representation and algebraic approximation.Algebra Logika 53 (4) (2014), 466–504, 550–551, (Russian), translation inAlgebra Logic 53 (2014), no. 4, 298–322. MR 3309850, 10.1007/s10469-014-9292-7 | 
| Reference: | [10] Herrmann, C., Semenova, M.V.: Linear representations of regular rings and complemented modular lattices with involution.Acta Sci. Math. (Szeged) 82 (3–4) (2016), 395–442. MR 3616186, 10.14232/actasm-015-283-5 | 
| Reference: | [11] Jacobson, N.: Structure of Rings.AMS Col. Publ. XXXVII, Amer. Math. Soc., Providence, RI, 1956. Zbl 0073.02002, MR 0081264 | 
| Reference: | [12] Micol, F.: On representability of $\ast $-regular rings and modular ortholattices.Ph.D. thesis, TU Darmstadt, January 2003, http://elib.tu-darmstadt.de/diss/000303/diss.pdf. | 
| Reference: | [13] Wehrung, F.: A uniform refinement property for congruence lattices.Proc. Amer. Math. Soc. 127 (1999), 363–370. Zbl 0902.06006, MR 1468207, 10.1090/S0002-9939-99-04558-X | 
| . |