Previous |  Up |  Next

Article

Title: Finite $p$-nilpotent groups with some subgroups weakly $\mathcal {M}$-supplemented (English)
Author: Dong, Liushuan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 1
Year: 2020
Pages: 291-297
Summary lang: English
.
Category: math
.
Summary: Suppose that $G$ is a finite group and $H$ is a subgroup of $G$. Subgroup $H$ is said to be weakly $\mathcal {M}$-supplemented in $G$ if there exists a subgroup $B$ of $G$ such that (1) $G=HB$, and (2) if $H_{1}/H_{G}$ is a maximal subgroup of $H/H_{G}$, then $H_{1}B=BH_{1}<G$, where $H_{G}$ is the largest normal subgroup of $G$ contained in $H$. We fix in every noncyclic Sylow subgroup $P$ of $G$ a subgroup $D$ satisfying $1<|D|<|P|$ and study the $p$-nilpotency of $G$ under the assumption that every subgroup $H$ of $P$ with $|H|=|D|$ is weakly $\mathcal {M}$-supplemented in $G$. Some recent results are generalized. (English)
Keyword: $p$-nilpotent group
Keyword: weakly $\mathcal {M}$-supplemented subgroup
Keyword: finite group
MSC: 20D10
MSC: 20D20
idZBL: 07217135
idMR: MR4078360
DOI: 10.21136/CMJ.2019.0273-18
.
Date available: 2020-03-10T10:20:45Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148056
.
Reference: [1] Gorenstein, D.: Finite Groups.Chelsea Publishing Company, New York (1980). Zbl 0463.20012, MR 0569209
Reference: [2] Huppert, B.: Endliche Gruppen I.German Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin (1967). Zbl 0217.07201, MR 0224703, 10.1007/978-3-642-64981-3
Reference: [3] Li, Y., Wang, Y., Wei, H.: The influence of $\pi$-quasinormality of some subgroups of a finite group.Arch. Math. 81 (2003), 245-252. Zbl 1053.20017, MR 2013253, 10.1007/s00013-003-0829-6
Reference: [4] Miao, L.: On weakly $\mathcal M$-supplemented subgroups of Sylow $p$-subgroups of finite groups.Glasg. Math. J. 53 (2011), 401-410. Zbl 1218.20017, MR 2783169, 10.1017/S0017089511000036
Reference: [5] Miao, L., Lempken, W.: On $\mathcal M$-supplemented subgroups of finite groups.J. Group Theory 12 (2009), 271-287. Zbl 1202.20021, MR 2502219, 10.1515/JGT.2008.077
Reference: [6] Miao, L., Lempken, W.: On weakly $\mathcal M$-supplemented primary subgroups of finite groups.Turk. J. Math. 34 (2010), 489-500. Zbl 1210.20022, MR 2721962, 10.3906/mat-0901-32
Reference: [7] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80, Springer, New York (1982). Zbl 0483.20001, MR 1261639, 10.1007/978-1-4419-8594-1
Reference: [8] Wei, H., Wang, Y.: On $c^{*}$-normality and its properties.J. Group Theory 10 (2007), 211-223. Zbl 1125.20011, MR 2302616, 10.1515/JGT.2007.017
.

Files

Files Size Format View
CzechMathJ_70-2020-1_18.pdf 249.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo