Title:
|
Vanishing conharmonic tensor of normal locally conformal almost cosymplectic manifold (English) |
Author:
|
Al-Hussaini, Farah H. |
Author:
|
Rustanov, Aligadzhi R. |
Author:
|
Abood, Habeeb M. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
61 |
Issue:
|
1 |
Year:
|
2020 |
Pages:
|
93-104 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The main purpose of the present paper is to study the geometric properties of the conharmonic curvature tensor of normal locally conformal almost cosymplectic manifolds (normal LCAC-manifold). In particular, three conhoronic invariants are distinguished with regard to the vanishing conharmonic tensor. Subsequentaly, three classes of normal LCAC-manifolds are established. Moreover, it is proved that the manifolds of these classes are $ \eta $-Einstein manifolds of type $ (\alpha,\beta) $. Furthermore, we have determined $ \alpha $ and $ \beta $ for each class. (English) |
Keyword:
|
normal locally conformal almost cosymplectic manifold |
Keyword:
|
conharmonic curvature tensor |
Keyword:
|
constant curvature |
Keyword:
|
$ \eta $-Einstein manifold |
MSC:
|
53B35 |
MSC:
|
53C55 |
idZBL:
|
Zbl 07217161 |
idMR:
|
MR4093432 |
DOI:
|
10.14712/1213-7243.2020.008 |
. |
Date available:
|
2020-04-30T11:21:03Z |
Last updated:
|
2022-04-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148078 |
. |
Reference:
|
[1] Abood H. M., Al-Hussaini F. H.: Locally conformal almost cosymplectic manifold of $\Phi$-holomorphic sectional conharmonic curvature tensor.Eur. J. Pure Appl. Math. 11 (2018), no. 3, 671–681. MR 3841377, 10.29020/nybg.ejpam.v11i3.3261 |
Reference:
|
[2] Blair D. E.: The theory of quasi-Sasakian structures.J. Differential Geometry 1 (1967), 331–345. MR 0226538, 10.4310/jdg/1214428097 |
Reference:
|
[3] Chinea D., Marrero J. C.: Conformal changes of almost cosymplectic manifolds.Demonstratio Math. 25 (1992), no. 3, 641–656. MR 1200763 |
Reference:
|
[4] Goldberg S. I., Yano K.: Integrabilty of almost cosymplectic structures.Pacific J. Math. 31 (1969), 373–382. MR 0251678, 10.2140/pjm.1969.31.373 |
Reference:
|
[5] Ishii Y.: On conharmonic transformations.Tensor (N.S.) 7 (1957), 73–80. MR 0102837 |
Reference:
|
[6] Kharitonova S. V.: Curvature conharmonic tensor of normal locally conformal almost cosymplectic manifolds.Vestnik OSU 12(161) (2013), 182–186. |
Reference:
|
[7] Kirichenko V. F.: Methods of generalized Hermitian geometry in the theory of almost contact manifolds.Itogi Nauki i Tekhniki, Problems of geometry 18 (1986), 25–71, 195 (Russian); translated in J. Soviet Math. 42 (1988), no. 5, 1885–1919. MR 0895367 |
Reference:
|
[8] Kirichenko V. F.: Differential–Geometry Structures on Manifolds.Printing House, Odessa, 2013 (Russian). |
Reference:
|
[9] Kirichenko V. F., Kharitonova S. V.: On the geometry of normal locally conformal almost cosymplectic manifolds.Mat. Zametki 91 (2012), no. 1, 40–53 (Russian); translated in Math. Notes 91 (2012), no. 1–2, 34–45. MR 3201391 |
Reference:
|
[10] Kirichenko V. F., Rustanov A. R.: Differential Geometry of quasi Sasakian manifolds.Mat. Sb. 193 (2002), no. 8, 71–100 (Russian); translated in Sb. Math. 193 (2002), no. 7–8, 1173–1201. MR 1934545 |
Reference:
|
[11] Olszak Z.: Locally conformal almost cosymplectic manifolds.Colloq. Math. 57 (1989), no. 1, 73–87. MR 1028604, 10.4064/cm-57-1-73-87 |
Reference:
|
[12] Olszak Z., Roça R.: Normal locally conformal almost cosymplectic manifolds.Publ. Math. Debrecen 39 (1991), no. 3–4, 315–323. MR 1154263 |
Reference:
|
[13] Sasaki S., Hatakeyama Y.: On differentiable manifolds with certain structures which are closely related to almost contact structures. II.Tohoku Math. J. (2) 13 (1961), 281–294. MR 0138065, 10.2748/tmj/1178244304 |
. |