Previous |  Up |  Next

Article

Title: Probabilistic properties of a Markov-switching periodic $GARCH$ process (English)
Author: Aliat, Billel
Author: Hamdi, Fayçal
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 6
Year: 2019
Pages: 915-942
Summary lang: English
.
Category: math
.
Summary: In this paper, we propose an extension of a periodic $GARCH$ ($PGARCH$) model to a Markov-switching periodic $GARCH$ ($MS$-$PGA$ $RCH$), and provide some probabilistic properties of this class of models. In particular, we address the question of strictly periodically and of weakly periodically stationary solutions. We establish necessary and sufficient conditions ensuring the existence of higher order moments. We further provide closed-form expressions for calculating the even-order moments as well as the autocovariances of the powers of a $MS$-$PGARCH$ process. We thus show how these moments and autocovariances can be used for estimating model parameters using $GMM$ method. (English)
Keyword: Markov-switching models
Keyword: periodic $GARCH$ models
Keyword: periodic stationarity
Keyword: higher-order moments
Keyword: Markov-switching $PGARCH$ models
Keyword: $GMM$ method
MSC: 60G10
MSC: 62M10
idZBL: Zbl 07217219
idMR: MR4077137
DOI: 10.14736/kyb-2019-6-0915
.
Date available: 2020-05-20T15:09:33Z
Last updated: 2020-08-26
Stable URL: http://hdl.handle.net/10338.dmlcz/148084
.
Reference: [1] A., Aknouche,, M., Bentarzi,: On the existence of higher-order moments for periodic $GARCH$ models..Statist. Probab. Lett. 78 (2008), 3262-3268. MR 2479488, 10.1016/j.spl.2008.06.010
Reference: [2] A., Aknouche,, A., Bibi,: Quasi-maximum likelihood estimation of periodic $GARCH$ and periodic $ARMA$-$GARCH$ processes..J. Time Series Anal. 28 (2009), 19-46. MR 2488634, 10.1016/j.spl.2008.06.010
Reference: [3] A., Aknouche,, H., Guerbyenne,: Periodic stationarity of random coefficient periodic autoregressions..Statist. Probab. Lett. 79 (2009), 990-996. MR 2509491, 10.1016/j.spl.2008.12.012
Reference: [4] B., Aliat,, F., Hamdi,: On markov-switching periodic $ARMA$ models..Comm. Statist. Theory Methods 47 (2018), 344-364. MR 3765077, 10.1080/03610926.2017.1303734
Reference: [5] M., Augustyniak,: Maximum likelihood estimation of the Markov-switching $GARCH$ model..Comput. Statist. Data Anal. 76 (2014), 61-75. MR 3209427, 10.1016/j.csda.2013.01.026
Reference: [6] M., Augustyniak,, M., Boudreault,, M., Morales,: Maximum likelihood estimation of the Markov-switching GARCH model based on a general collapsing procedure..Methodol. Comput. Appl. Probab. 20 (2018), 165-188. MR 3760343, 10.1007/s11009-016-9541-4
Reference: [7] L., Bauwens,, A., Preminger,, K., Rombouts, J. V.: Theory and inference for Markov switching $GARCH$ model..Econometr. J. 13 (2010), 218-244. MR 2722883, 10.1111/j.1368-423x.2009.00307.x
Reference: [8] M., Bentarzi,, F., Hamdi,: Mixture periodic autoregressive conditional heteroskedastic models..Comput. Statist. Data Anal. 53 (2008), 1-16. MR 2528588, 10.1016/j.csda.2008.06.019
Reference: [9] M., Bentarzi,, F., Hamdi,: Mixture periodic autoregression with aeriodic $ARCH$ errors..Adv. Appl. Statist. 8 (2008), 219-46. MR 2445517
Reference: [10] A., Bibi,, A., Aknouche,: On periodic $GARCH$ processes: Stationarity Statist. 17 (2008), 305-316.. MR 2483459, 10.3103/s1066530708040029
Reference: [11] A., Bibi,, I., Lescheb,: Strong consistency and asymptotic normality of least squares estimators for $PGARCH$ and $PARMA$-$PGARCH$ models..Statist. Probab. Lett. 80 (2010), 1532-1542. MR 2669757, 10.1016/j.spl.2010.06.007
Reference: [12] A., Bibi,, I., Lescheb,: A conditional least squares approach to $PGARCH$ and $PARMA$-$PGARCH$ time series estimation..Comptes Rendus Math. 348 (2010), 1211-1216. MR 2738929, 10.1016/j.crma.2010.10.019
Reference: [13] A., Bibi,, I., Lescheb,: Estimation and asymptotic properties in periodic $GARCH(1,1)$ models..Comm. Statist. Theory Methods 42 (2013), 3497-3513. MR 3170947, 10.1080/03610926.2011.633201
Reference: [14] M., Billio,, R., Casarin,, A., Osuntuyi,: Efficient Gibbs sampling for Markov switching $GARCH$ models..Comput. Statist. Data Anal. 100 (2016), 37-57. MR 3505789, 10.1016/j.csda.2014.04.011
Reference: [15] T., Bollerslev,: Generalized autoregressive conditional heteroskedasticity..J. Econometr. 31 (1986), 307-327. MR 0853051, 10.1016/0304-4076(86)90063-1
Reference: [16] T., Bollerslev,, E., Ghysels,: Periodic autoregressive conditional heteroskedasticity..J. Business Econom. Statist. 14 (1996), 139-152. 10.2307/1392425
Reference: [17] P., Bougerol,, N., Picard,: Strict stationarity of generalized autoregressive processes..Ann. Probab. 20 (1992), 1714-1730. MR 1188039, 10.1214/aop/1176989526
Reference: [18] J., Cai,: A Markov model of Switching-regime $ARCH$..J. Business Econom. Statist. 12 (1994), 309-316. 10.2307/1392087
Reference: [19] C., Francq,, M., Roussignol,, M., Zako\"ıan, J.: Conditional heteroskedasticity driven by hidden Markov chains..J. Time Ser. Anal. 22 (2001), 197-220. MR 1820776, 10.1111/1467-9892.00219
Reference: [20] C., Francq,, M., Zako\"ıan, J.: The $L^{2}$-structures of standard and switching-regime $GARCH$ models..Stoch. Process. Appl. 115 (2005), 1557-1582. MR 2158020
Reference: [21] C., Francq,, M., Zako\"ıan, J.: Deriving the autocovariances of powers of Markov-switching $GARCH$ models with applications to statistical inference..Computat. Statist. Data Anal. 52 (2008), 3027-3046. MR 2424774, 10.1016/j.csda.2007.08.003
Reference: [22] H., Franses, P., R., Paap,: Modeling changing day-of-the-week seasonality in stock returns and volatility..Appl. Financ. Econom. 52 (2000), 3027-3046.
Reference: [23] G., Gladyshev, E.: Periodically correlated random sequences..Doklady Akademii Nauk SSSR 137 (1961), 1026-1029. MR 0126873
Reference: [24] F., Gray, S.: Modeling the conditional distribution of interest rates as a regime-switching process..J. Financ. Econom. 42 (1996), 27-62. 10.1016/0304-405x(96)00875-6
Reference: [25] M., Haas,, S., Paolella, M.: Mixture and regime-switching $GARCH$ models..In: Handbook of Volatility Models and their Applications 2012, pp. 71-102. MR 3307112, 10.1002/9781118272039.ch3
Reference: [26] M., Haas,, S., Mittnik,, S., Paolella, M.: A new approach to Markov-switching $GARCH$ models..J. Financ. Econometr. 2 (2004), 493-530. 10.1093/jjfinec/nbh020
Reference: [27] F., Hamdi,, S., Souam,: Mixture periodic $GARCH $ models: Applications to exchange rate modeling..In: Modeling, Simulation and Applied Optimization (ICMSAO), 5th International Conference on IEEE, 2013. 10.1109/icmsao.2013.6552570
Reference: [28] F., Hamdi,, S., Souam,: Mixture periodic $GARCH$ models: theory and applications..Empir. Econom. 55 (2018), 1925-1956. 10.1007/s00181-017-1348-9
Reference: [29] D., Hamilton, J.: A new approach to the economie analysis of nonstationary time series and the business cycle..Econometrica 57 (1989), 357-384. MR 0996941, 10.2307/1912559
Reference: [30] D., Hamilton, J., R., Susmel,: Autoregressive condiational heteroskedasticity and changes in regime..J. Econometr. 64 (1994), 307-333. 10.1016/0304-4076(94)90067-1
Reference: [31] S., Henneke, J., T., Rachev, S., J., Fabozzi, F., M.Nikolov: MCMC-based estimation of Markov switching $ARMA$-$GARCH$ models..Appl. Econom. 43 (2011), 259-271. 10.1080/00036840802552379
Reference: [32] A., Horn, R., R., Johnson, C.: Matrix Analysis. Second edition..Cambridge University Press, New York 2013. MR 2978290
Reference: [33] F., Klaassen,: Improving $GARCH$ volatility forecasts..Empir. Econometr. 27 (2002), 363-394. 10.1007/s001810100100
Reference: [34] P., Lancaster,, M., Tismenetsky,: The Theory of Matrices..Academic Press, New York 1985. MR 0792300
Reference: [35] O., Lee,, W., Shin, D.: Geometric ergodicity and moment conditions for a seasonal $GARCH$ model with periodic coefficients..Comm. Statist. Theory Methods 39 (2009), 38-51. MR 2654858, 10.1080/03610920802715032
Reference: [36] K., Newey, W., D., West, K.: Hypothesis testing with efficient method of moments estimation..Int. Econom. Rev. 28 (1987), 3, 777-787. MR 0912975, 10.2307/2526578
Reference: [37] N., Regnard,, M., Zako\"ıan, J.: Structure and estimation of a class of nonstationary yet nonexplosive $GARCH$ models..J. Time Series Anal. 31 (2010), 348-364. MR 2724515, 10.1111/j.1467-9892.2010.00669.x
.

Files

Files Size Format View
Kybernetika_55-2019-6_2.pdf 651.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo