Previous |  Up |  Next

Article

Title: Non-fragile estimation for discrete-time T-S fuzzy systems with event-triggered protocol (English)
Author: Han, Fei
Author: Gao, Wei
Author: Gao, Hongyu
Author: He, Qianqian
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 1
Year: 2020
Pages: 57-80
Summary lang: English
.
Category: math
.
Summary: This paper investigates the non-fragile state estimation problem for a class of discrete-time T-S fuzzy systems with time-delays and multiple missing measurements under event-triggered mechanism. First of all, the plant is subject to the time-varying delays and the stochastic disturbances. Next, a random white sequence, the element of which obeys a general probabilistic distribution defined on $[0,1]$, is utilized to formulate the occurrence of the missing measurements. Also, an event generator function is employed to regulate the transmission of data to save the precious energy. Then, a non-fragile state estimator is constructed to reflect the randomly occurring gain variations in the implementing process. By means of the Lyapunov-Krasovskii functional, the desired sufficient conditions are obtained such that the Takagi-Sugeno (T-S) fuzzy estimation error system is exponentially ultimately bounded in the mean square. And then the upper bound is minimized via the robust optimization technique and the estimator gain matrices can be calculated. Finally, a simulation example is utilized to demonstrate the effectiveness of the state estimation scheme proposed in this paper. (English)
Keyword: Takagi--Sugeno fuzzy system
Keyword: exponentially ultimately boundness
Keyword: non-fragile estimation
Keyword: robust optimization
MSC: 93B35
MSC: 93C42
MSC: 93E10
MSC: 93E11
idZBL: Zbl 07217211
idMR: MR4091784
DOI: 10.14736/kyb-2020-1-0057
.
Date available: 2020-05-20T15:31:21Z
Last updated: 2021-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/148097
.
Reference: [1] Bu, X., Dong, H., Han, F., Hou, N., Li, G.: Distributed filtering for time-varying systems over sensor networks with randomly switching topologies under the Round-Robin protocol..Neurocomputing 346 (2019), 58-64. MR 4044317, 10.1016/j.neucom.2018.07.087
Reference: [2] Chen, W., Ding, D., Ge, X., Han, Q.-L., Wei, G.: H-infinity containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case..IEEE Trans. Cybernet. 59 (2020), 4, 1372-1382. 10.1109/tcyb.2018.2885567
Reference: [3] Chen, W., Zhong, J., Zheng, W.: Delay-independent stabilization of a class of time-delay systems via periodically intermittent control..Automatica 71 (2016), 89-97. MR 3521957, 10.1016/j.automatica.2016.04.031
Reference: [4] Ding, D., Han, Q.-L., Wang, Z., Ge, X.: A survey on model-based distributed control and filtering for industrial cyber-physical systems..IEEE Trans. Industr. Inform. 15 (2019), 2483-2499. 10.1109/tii.2019.2905295
Reference: [5] Ding, D., Wang, Z., Han, Q.-L., Wei, G.: Neural-network-based output-feedback control under Round-Robin scheduling protocols..IEEE Trans. Cybernet. 49 (2019), 2372-2384. 10.1109/tii.2019.2905295
Reference: [6] Dong, H., Bu, X., Hou, N., Liu, Y., Alsaadi, F. E., Hayat, T.: Event-triggered distributed state estimation for a class of time-varying systems over sensor networks with redundant channels..Inform. Fusion 36 (2017), 243-250. 10.1016/j.inffus.2016.12.005
Reference: [7] Ding, D., Wang, Z., Wei, G., Alsaadi, F. E.: Event-based security control for discrete-time stochastic systems..IET Control Theory Appl. 10 (2016), 1808-1815. MR 3587315, 10.1049/iet-cta.2016.0135
Reference: [8] Ge, X., Han, Q.-L., Wang, Z.: A threshold-parameter-dependent approach to designing distributed event-triggered $H_{\infty}$ consensus filters over sensor networks..IEEE Trans. Cybernet. 49 (2019),1148-1159. 10.1109/tcyb.2017.2789296
Reference: [9] Ge, X., Han, Q.-L., Wang, Z.: A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks..IEEE Trans. Cybernet. 49 (2019), 171-183. 10.1109/tcyb.2017.2769722
Reference: [10] Ge, X., Han, Q.-L.: Consensus of multiagent systems subject to partially accessible and overlapping Markovian network topologies..IEEE Trans. Cybernet. 47 (2017), 1807-1819. 10.1109/tcyb.2016.2570860
Reference: [11] Gao, M., Yang, S., Sheng, L., Zhou, D.: Fault diagnosis for time-varying systems with multiplicative noises over sensor networks subject to Round-Robin protocol..Neurocomputing 346 (2019), 65-72. 10.1016/j.neucom.2018.08.087
Reference: [12] Guan, X., Chen, C.: Delay-dependent guaranteed cost control for T-S fuzzy systems with time delays..IEEE Trans. Fuzzy System 12 (2004), 236-249. MR 2096656, 10.1109/TFUZZ.2004.825085
Reference: [13] Han, F., Song, Y., Zhang, S., Li, W.: Local condition-based finite-horizon distributed $H_{\infty}$-consensus filtering for random parameter system with event-triggering protocols..Neruocomputing 219 (2017), 221-231. 10.1016/j.neucom.2016.09.022
Reference: [14] Han, F., Ding, D., Yang., F., Gao, W.: Distributed resilient estimation for nonlinear delay systems with stochastic perturbations..Int. J. Robust Nonlinear Control 30 (2020) 843-863. 10.1002/rnc.4783
Reference: [15] Hu, J., Chen, D., Du, J.: State estimation for a class of discrete nonlinear systems with randomly occurring uncertainties and distributed sensor delays..Int. J. General Systems 43 (2014), 387-401. MR 3177030, 10.1080/03081079.2014.892251
Reference: [16] Hu, J., Liang, J., Chen, D.: A recursive approach to non-fragile filtering for networked systems with stochastic uncertainties and incomplete measurements..J. Franklin Inst. 352 (2015), 1946-1962. MR 3334122, 10.1016/j.jfranklin.2015.02.002
Reference: [17] Liu, Y., Guo, B., Park, J.: Non-fragile $H_{\infty}$ filtering for delayed Takagi-Sugeno fuzzy systems with randomly occurring gain variations..Fuzzy Sets Systems 316 (2017), 99-116. MR 3623196, 10.1016/j.fss.2016.11.001
Reference: [18] Ko, J. W., Park, P. G.: Further enhancement of stability and stabilisability margin for Takagi-Sugeno fuzzy systems..IET Control Theory 6 (2012), 313-318. MR 2932086, 10.1049/iet-cta.2011.0009
Reference: [19] Liu, Y., Wang, Z., Liang, J., Liu, X.: Synchronization and state estimation for discrete-time complex networks with distributed delays..IEEE Trans. Cybernet. 38 (2008), 1314-1325. 10.1109/tsmcb.2008.925745
Reference: [20] Li, Q., Shen, B., Wang, Z.: An event-triggered approach to distributed $H_{\infty}$ state estimation for state-saturated systems with randomly occurring mixed delays..J. Franklin Inst. 355 (2018), 3104-3121. MR 3778262, 10.1016/j.jfranklin.2018.02.007
Reference: [21] Li, Q., Shen, B., Liu, Y., Alsaadi, F. E.: Event-triggered $H_{\infty}$ state estimation for discrete-time stochastic genetic regulatory networks with Markovian jumping parameters and time-varying delays..Neurocomputing {\mi174} (2016), 912-920. 10.1016/j.neucom.2015.10.017
Reference: [22] Li, J., Dong, H., Wang, Z., Bu, X.: Partial-Neurons-Based Passivity-Guaranteed state estimation for neural networks with randomly occurring time-delays..IEEE Trans. Neural Networks Learning Syst. (2019), 1-7.
Reference: [23] Li, J., Dong, H., Wang, Z., Hou, N., Alsaadi, F. E.: On passivity and robust passivity for discrete-time stochastic neural networks with randomly occurring mixed time delays..Neural Computing Appl. 31 (2019), 65-78. 10.1007/s00521-017-2980-1
Reference: [24] Lian, Z., He, Y., Zhang, C.: Stability analysis for T-S fuzzy systems with time-varying delay via free-matrix-based integral inequality..Int. Control Automat. Syst. 14 (2016), 21-28. MR 3774604, 10.1007/s12555-015-2001-z
Reference: [25] Liu, Y., Wang, Z., He, X., Zhou, D.: Filtering and fault detection for nonlinear systems with polynomial approximation..Automatica 54 (2015), 348-359. MR 3324541, 10.1016/j.automatica.2015.02.022
Reference: [26] Liu, Y., Wang, Z., Zhou, D.: Quantised polynomial filtering for nonlinear systems with missing measurement..Int. J. Control 91 (2018), 2250-2260. MR 3857116, 10.1080/00207179.2017.1337933
Reference: [27] Liu, J., Liu, Q., Cao, J.: Adaptive event-triggered $H_{\infty}$ filtering for T-S fuzzy system with time delay..Neurocomputing 189 (2016), 86-94. 10.1016/j.neucom.2015.12.049
Reference: [28] Ma, L., Wang, Z., Liu, Y., Alsaadi, F. E.: A note on guaranteed cost control for nonlinear stochastic systems with input saturation and mixed time-delays..Int. J. Robust Nonlinear Control 27 (2017), 4443-4456. MR 3733677, 10.1002/rnc.3809
Reference: [29] Shi, P., Zhang, Y., Agarwal, R. K.: Stochastic finite-time state estimation for discrete time-delay neural networks with Markovian jumps..Neurocomputing 151 (2015), 168-174. 10.1016/j.neucom.2014.09.059
Reference: [30] Sheng, L., Niu, Y., Gao, M.: Distributed resilient filtering for time-varying systems over sensor networks subject to Round-Robin/stochastic protocol..ISA Trans. 87 (2019), 55-67. 10.1016/j.isatra.2018.11.012
Reference: [31] Sheng, L., Wang, Z., Zou, L., Alsaadi, F.: Event-based $H_{\infty}$ state estimation for time-varying stochastic dynamical networks with state- and disturbance-dependent noises..IEEE Trans. Neural Networks Learning Syst. 28 (2017), 2382-2394. MR 3709755, 10.1109/tnnls.2016.2580601
Reference: [32] Shen, Y., Wang, Z., Shen, B., Alsaadi, Fa. E., Alsaadi, F. E.: Fusion estimation for multi-rate linear repetitive processes under weighted Try-Once-Discard protocol..Inform. Fusion 55 (2020), 281-291. 10.1016/j.inffus.2019.08.013
Reference: [33] Tong, M., Lin, W., Huo, X., Jin, Z.: A model-free fuzzy adaptive trajectory tracking control algorithm based on dynamic surface control..Int. J. Advanced Robotic Syst. 17 (2020), 1, 1729881419894417. 10.1177/1729881419894417
Reference: [34] Tian, E., Wang, Z., Zou, L., Yue, D.: Probability-constrained filtering for a class of nonlinear systems with improved static event-triggered communication..Int. J. Robust and Nonlinear Control 29 (2019), 1484-1498. MR 3915146, 10.1002/rnc.4447
Reference: [35] Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modelling and control..IEEE Trans. Systems Man Cybernet. SMC-15 (1985), 116-132
Reference: [36] Yu, Y., Dong, H., Wang, Z.: Design of non-fragile state estimators for discrete time-delayed neural networks with parameter uncertainties..Neurocomputing 182 (2016), 18-24. 10.1016/j.neucom.2015.11.079
Reference: [37] Yan, H., Qian, F., Yang, F.: $H_{\infty}$ filtering for nonlinear networked systems with randomly occurring distributed delays, missing measurements and sensor saturation..Inform. Sci. 370 (2016), 772-782. 10.1016/j.ins.2015.09.027
Reference: [38] Wang, L., Wang, Z., Huang, T., Wei, G.: An event-triggered approach to state estimation for a class of complex networks with mixed time delays and nonlinearities..IEEE Trans. Cybernet. 46 (2016), 2497-2508. 10.1109/tcyb.2015.2478860
Reference: [39] Wang, F., Wang, Z., Liang, J.: Resilient state estimation for 2-D time-varying systems with redundant channels: A variance-constrained approach..IEEE Trans. Cybernet. 49 (2019), 2479-2489. 10.1109/tcyb.2018.2821188
Reference: [40] Wang, B., Cheng, J., Al-Barakati, A.: A mismatched membership function approach to sampled-data stabilization for T-S fuzzy systems with time-varying delayed signals..Signal Process. 140 (2017), 161-170. 10.1016/j.sigpro.2017.05.018
Reference: [41] Wu, L., Su, X., Shi, P.: Robust filtering of discrete-time T-S fuzzy time-delay systems..In: Fuzzy Control Systems with Time-Delay and Stochastic Perturbation, Springer-Cham 2015, 79-113. MR 3525793, 10.1007/978-3-319-11316-6\_4
Reference: [42] Zhang, L., Ning, Z., Wang, Z.: Distributed filtering for fuzzy time-delay systems with packet dropouts and redundant channels..IEEE Trans. Systems Man Cybernet.: Systems 46 (2016), 559-572. 10.1109/tsmc.2015.2435700
Reference: [43] Zhang, D., Shi, P., Wang, Q.: Distributed non-fragile filtering for T-S fuzzy systems with event-based communications..Fuzzy Sets Syst. 306 (2017), 137-152. MR 3567161, 10.1016/j.fss.2016.02.009
Reference: [44] Zou, L., Wang, Z., Gao, H., Liu, X.: Event-triggered state estimation for complex networks with mixed time delays via sampled data information: the continuous-time case..IEEE Trans. Cybernet. 45 (2015), 2804-2815. 10.1109/tcyb.2014.2386781
Reference: [45] Zhang, S., Wang, Z., Ding, D., Wei, G., Alsaadi, F. E., Hayat, T.: A gain-scheduling approach to nonfragile $H_{\infty}$ fuzzy control subject to fading channels..IEEE Trans. Fuzzy Syst. 26 (2018), 142-154. 10.1109/tfuzz.2016.2641023
Reference: [46] Zhe, D., Zheng, Y.: Finite-horizon robust Kalman filtering for uncertain discrete time-varying systems with uncertain-covariance white noises..IEEE Signal Process. Lett. 13 (2006), 493-496. 10.1109/lsp.2006.873148
Reference: [47] Zhang, X., Han, Q., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C.: Networked control systems: a survey of trends and techniques..IEEE/CAA J. Automat. Sinica (2019), 1-17. MR 3748030, 10.1109/JAS.2019.1911651
Reference: [48] Zuo, Z., Han, Q., Ning, B., Ge, X., Zhang, X.: An overview of recent advances in fixed-time cooperative control of multi-agent systems..IEEE Trans. Industr. Inform. 14 (2018), 2322-2334. MR 3932129, 10.1109/tii.2018.2817248
.

Files

Files Size Format View
Kybernetika_56-2020-1_4.pdf 627.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo