Previous |  Up |  Next

Article

Title: Variance-Constrained $H_{\infty }$ finite-horizon filtering for multi-rate time-varying networked systems based on stochastic protocols (English)
Author: Lyu, Ming
Author: Zhang, Jie
Author: Bo, YuMing
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 1
Year: 2020
Pages: 127-151
Summary lang: English
.
Category: math
.
Summary: In this paper, the variance-constrained $H_\infty$ finite-horizon filtering problem is investigated for a class of time-varying nonlinear system under muti-rate communication network and stochastic protocol (SP). The stochastic protocol is employed to determine which sensor obtains access to the muti-rate communication network in order to relieve communication burden. A novel mapping technology is applied to characterize the randomly switching behavior of the data transmission resulting from the utilization of the SP in muti-rate communication network. By using relaxation method, sufficient conditions are derived for the existence of the finite-horizon filter satisfying both the prescribed $H_\infty$ performance and the covariance requirement of filtering errors, and the solutions of filters satisfying the above indexes are obtained by using linear matrix inequalities. Finally, the validity and effectiveness of the proposed filter scheme are verified by numerical simulation. (English)
Keyword: $H_{\infty }$ finite-horizon filtering
Keyword: muti-rate communication
Keyword: stochastic protocol (SP)
Keyword: time-varying systems
MSC: 60G35
MSC: 93C10
MSC: 93C55
MSC: 93E11
idZBL: Zbl 07217214
idMR: MR4091787
DOI: 10.14736/kyb-2020-1-0127
.
Date available: 2020-05-20T15:36:39Z
Last updated: 2021-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/148100
.
Reference: [1] Brunot, M., Janot, A., Young, P., Carrillo, F.: An instrumental variable method for robot identification based on time variable parameter estimation..Kybernetika 54 (2019), 1, 202-220. MR 3780963, 10.14736/kyb-2018-1-0202
Reference: [2] Chen, W., Ding, D.-R., Ge, X.-H., Han, Q.-L., Wei, G.: $H_\infty$ containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case..IEEE Trans. Cybernet. 50 (2020), 4, 1372-1382. 10.1109/tcyb.2018.2885567
Reference: [3] Chen, W., Ding, D.-R., Dong, H.-L., Wei, G.-L.: Distributed resilient filtering for power systems subject to denial-of-service attacks..IEEE Trans. Systems Man Cybernet.: Systems 49 (2019), 8, 1688-1697. 10.1109/tsmc.2019.2905253
Reference: [4] Cetinkaya, A., Ishii, H., Hayakawa, T.: Analysis of Stochastic Switched Systems With Application to Networked Control Under Jamming Attacks.IEEE Trans. Automat. Control 64 (2019), 5, 2013-2028. MR 3951043, 10.1109/tac.2018.2832466
Reference: [5] Deng, F., Yang, H.-L., Wang, L.-J.: Adaptive unscented Kalman filter based estimation and filtering for dynamic positioning with model uncertainties..Int. J. Control Automat. Systems 17 (2019), 3, 667-678. 10.1007/s12555-018-9503-4
Reference: [6] Ding, D.-R., Wang, Z.-D., Han, Q.-L., Wei, G.-L.: Neural-network-based output-feedback control under Round-Robin scheduling protocols..IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384. 10.1109/tcyb.2018.2827037
Reference: [7] Ding, D.-R., Han, Q.-L., Wang, Z.-R., Ge, X.-H.: A survey on model-based distributed control and filtering for industrial cyber-physical systems..IEEE Trans. Industr. Inform. {\mi15} (2019), 5, 2483-2499. 10.1109/tii.2019.2905295
Reference: [8] Dong, H.-L., Wang, Z.-D., Shen, B., Ding, D.-R.: Variance-constrained $H_{\infty}$ control for a class of nonlinear stochastic discrete time-varying systems: The event-triggered design..Automatica 72 (2016), 28-36. MR 3542911, 10.1016/j.automatica.2016.05.012
Reference: [9] Du, Z.-L., Li, X.-M.: Strong tracking Tobit Kalman filter with model uncertainties..Int. J. Control Automat. Systems 17 (2019), 2, 345-355. 10.1007/s12555-017-0655-4
Reference: [10] Ge, X.-H., Han, Q.-L.: Consensus of multiagent systems subject to partially accessible and overlapping Markovian network topologies..IEEE Trans. Cybernet. 47 (2017), 8, 1807-1819. 10.1109/tcyb.2016.2570860
Reference: [11] Ge, X.-H., Han, Q.-L., Wang, Z.-D.: A threshold-parameter-dependent approach to designing distributed event-triggered $H_{\infty}$ consensus filters over sensor networks..IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159. 10.1109/tcyb.2017.2789296
Reference: [12] Ge, X.-H., Han, Q.-L., Wang, Z.-D.: A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks..IEEE Trans. Cybernet. 49 (2019), 1, 171-183. 10.1109/tcyb.2017.2769722
Reference: [13] Fridman, E., Shaked, U., Xie, L.: Robust $H_\infty$ filtering of linear systems with time-varying delay..IEEE Trans. Automat. Control 48 (2003), 1, 159-165. MR 1950328, 10.1109/tac.2002.806674
Reference: [14] He, Y., Liu, G.-P., Rees, D., Wu, M.: $H_\infty$ Filtering for discrete-time systems with time-varying delay..Signal Process. 89 (2009), 3, 275-282. MR 2680246, 10.1016/j.sigpro.2008.08.008
Reference: [15] Hu, C., Qin, W., Li, Z., He, B., Liu, G.: Consensus-based state estimation for multi-agent systems with constraint information..Kybernetika 3 (2017), 53, 545-561. MR 3684685, 10.14736/kyb-2017-3-0545
Reference: [16] Hung, Y.-S., Yang, F.-W.: Robust $H_\infty$ filtering with error variance constraints for uncertain discrete time-varying systems with uncertainty..Automatica 39 (2003), 7, 1185-1194. MR 2140848, 10.1016/s0005-1098(03)00117-1
Reference: [17] Liang, Y., Chen, T.-W., Pan, Q.: Multi-rate optimal state estimation..Int. J. Control 82 (2009), 11, 2059-2076. MR 2561978, 10.1080/00207170902906132
Reference: [18] Li, X.-G., Zhu, X.-J.: Stability analysis of neutral systems with distributed delays..Automatica 44 (2008), 8, 2197-2201. Zbl 1283.93212, MR 2531353, 10.1016/j.automatica.2007.12.009
Reference: [19] Li, H., Shi, Y.: Robust $H_\infty$ filtering for nonlinear stochastic systems with uncertainties and Markov delays..Automatica 48 (2012), 1, 159-166. MR 2879424, 10.1016/j.automatica.2011.09.045
Reference: [20] Liu, K., Fridman, E., Hetel, L.: Stability and $L_{2}-gain$ analysis of networked control systems under round-robin scheduling: a time-delay approach..Systems Control Lett. 61 (2012), 5, 666-675. MR 2913495, 10.1016/j.sysconle.2012.03.002
Reference: [21] Liu, S., Wang, Z.-D., Wang, L.-C., Wei, G.-L.: On quantized $H_{\infty}$ filtering for multi-rate systems under stochastic communication protocols: The finite-horizon case..Inform. Sci. 459 (2018), 211-223. MR 3811013, 10.1016/j.ins.2018.02.050
Reference: [22] Qi, Q., Zhang, H., Wu, Z.: Stabilization control for linear continuous-time mean-field systems.IEEE Trans. Automat. Control 64 (2019), 8, 3461-3468. MR 3992889, 10.1109/tac.2018.2881141
Reference: [23] Tabbara, M., Nesic, D.: Input-output stability of networked control systems with stochastic protocols and channels..IEEE Trans. Automat. Control 53 (2008), 5, 1160-1175. MR 2445672, 10.1109/tac.2008.923691
Reference: [24] Shen, B., Wang, Z.-D., Huang, T.-W.: Stabilization for sampled-data systems under noisy sampling interval..Automatica 63 (2016), 162-166. MR 3429982, 10.1016/j.automatica.2015.10.005
Reference: [25] Subramanian, A., Sayed, A.-H.: Multiobjective filter design for uncertain stochastic time-delay systems..IEEE Trans. Automat. Control 49 (2004), 1, 149-154. MR 2028557, 10.1109/tac.2003.821422
Reference: [26] Tan, H., Shen, B., Liu, Y., Alsaedi, A., Ahmad, B.: Event-triggered multi-rate fusion estimation for uncertain system with stochastic nonlinearities and colored measurement noises..Inform. Fusion 36, (2017), 313-320. 10.1016/j.inffus.2016.12.003
Reference: [27] Wang, Z.-D., Ho, D.-W.C., Liu, X.: Variance-constrained filtering for uncertain stochastic systems with missing measurements..IEEE Trans. Automat. Control 48 (2003), 7, 560-567. MR 1988100
Reference: [28] Xu, Y., Su, H., Pan, Y.-J., Wu, Z., Xu, W.: Stability analysis of networked control systems with round-robin scheduling and packet dropouts..J. Franklin Inst. 350 (2013), 8, 2013-2027. MR 3084055, 10.1016/j.jfranklin.2013.05.024
Reference: [29] Yaz, Y.-I., Yaz, E.-E.: On LMI formulations of some problems arising in nonlinear stochastic system analysis..IEEE Trans. Automat. Control 44 (1999), 4, 813-816. MR 1684441, 10.1109/9.754824
Reference: [30] Zhang, W.-A., Feng, G, Yu, L.: Multi-rate distributed fusion estimation for sensor networks with packet losses..Automatica 48 (2012), 9, 2016-2028. MR 2956878, 10.1016/j.automatica.2012.06.027
Reference: [31] Zhang, X.-M., Han, Q.-L.: A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs..IEEE Trans. Cybernet. 46 (2016), 12, 2745-2757. 10.1109/tcyb.2015.2487420
Reference: [32] Zhang, X.-M., Han, Q.-L., Ge, X.-H., Ding, D.-R., Ding, L., Yue, D., Peng, C.: Networked control systems: a survey of trends and techniques..IEEE/CAA J. Automat. Sinica, 1-17. MR 3841465, 10.1109/jas.2019.1911651
Reference: [33] Zhang, Y., Wang, Z.-D., Ma, L.-F.: Variance-constrained state estimation for networked multi-rate systems with measurement quantization and probabilistic sensor failures..Int. J. Robust Nonlinear Control 26 (2016), 16, 3507-3523. MR 3565746, 10.1002/rnc.3520
Reference: [34] Zheng, S.: Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods..Kybernetika 54, (2018), 5, 937-957. MR 3893129, 10.14736/kyb-2018-5-0937
Reference: [35] Zuo, Z., Han, Q.-L., Ning, B., Ge, X.-H., Zhang, X.-M.: An overview of recent advances in fixed-time cooperative control of multi-agent systems..IEEE Trans. Industr. Inform. 14 (2018), 6, 2322-2334. MR 3932129, 10.1109/tii.2018.2817248
Reference: [36] Ding, D.-R., Wang, Z.-D., Han, Q.-L.: A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks..IEEE Trans. Automat. Control, 1-1. 10.1109/tac.2019.2934389
.

Files

Files Size Format View
Kybernetika_56-2020-1_7.pdf 768.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo