Previous |  Up |  Next

Article

Title: On hybrid consensus-based extended Kalman filtering with random link failures over sensor networks (English)
Author: Zhu, Pailiang
Author: Wei, Guoliang
Author: Li, Jiajia
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 1
Year: 2020
Pages: 189-212
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with the distributed filtering problem for nonlinear time-varying systems over wireless sensor networks under random link failures. To achieve consensus estimation, each sensor node is allowed to communicate with its neighboring nodes according to a prescribed communication topology. Firstly, a new hybrid consensus-based filtering algorithm under random link failures, which affect the information exchange between sensors and are modeled by a set of independent Bernoulli processes, is designed via redefining the interaction weights. Second, a novel observability condition, called parameterized jointly uniform observability, is proposed to ensure the stochastic boundedness of the error covariances of the hybrid consensus-based filtering algorithm. Finally, an example is given to demonstrate the effectiveness of the derived theoretical results. (English)
Keyword: extended Kalman filter
Keyword: hybrid consensus filter
Keyword: sensor network
Keyword: distributed state estimation
Keyword: random link failure
idZBL: Zbl 07217217
idMR: MR4091790
DOI: 10.14736/kyb-2020-1-0189
.
Date available: 2020-05-20T15:42:53Z
Last updated: 2021-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/148103
.
Reference: [1] Battistelli, G., Chisci, L.: Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability..Automatica 50 (2014), 3, 707-718. MR 3173970, 10.1016/j.automatica.2013.11.042
Reference: [2] Battistelli, G., Chisci, L., Fantacci, C.: Parallel consensus on likelihoods and priors for networked nonlinear fitering..IEEE Signal Process. Lett. 21 (2014), 7, 787-791. 10.1109/lsp.2014.2316258
Reference: [3] Battistelli, G., Chisci, L., Mugnai, G., Farina, A., Graziano, A.: Consensus-based linear and nonlinear fitering..IEEE Trans. Automat. Control 60 (2015), 5, 1410-1415. MR 3351426, 10.1109/tac.2014.2357135
Reference: [4] Battistelli, G., Chisci, L., Stefano, M., Francesco, P.: An information-theoretic approach to distributed state estimation..In: Proc. 18th IFAC World Congress 2011, 12477-12482. 10.3182/20110828-6-it-1002.01998
Reference: [5] Boutayeb, M., Rafaralahy, H., Darouach, M.: Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems..IEEE Trans. Automat. Control 42 (1997), 4, 581-586. MR 1442599, 10.1109/9.566674
Reference: [6] Chen, W., Ding, D., Dong, H., Wei, G.: Distributed resilient filtering for power systems subject to denial-of-service attacks..IEEE Trans. Systems Man Cybernet.: Systems 49 (2019), 8, 1688-1697. 10.1109/tsmc.2019.2905253
Reference: [7] Chen, W., Ding, D., Ge, X., Han, Q.-L., Wei, G.: $\mathcal{H}_{\infty}$ containment control of multiagent systems under event-triggered communication scheduling: The finite-horizon case..IEEE Trans. Cybernet. (2019), 1-11. 10.1109/tcyb.2018.2885567
Reference: [8] Ding, D., Han, Q.-L., Wang, Z., Ge, X.: A survey on model-based distributed control and filtering for industrial cyber-physical systems..IEEE Trans. Industr. Inform. 17 (2019), 5, 2483-2499. 10.1109/tii.2019.2905295
Reference: [9] Ding, D., Wang, Z., Han, Q.-L.: A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks..IEEE Trans. Automat. Control (2019), 1-1.
Reference: [10] Dong, H., Wang, Z., Ding, S. X., Gao, H.: Finite-horizon estimation of randomly occurring faults for a class of nonlinear time-varying systems..Automatica 50 (2014), 12, 3182-3189. MR 3284153, 10.1016/j.automatica.2014.10.026
Reference: [11] Dong, H., Wang, Z., Ho, D. W. C., Gao, H.: Variance-constrained filtering for a class of nonlinear time-varying systems with multiple missing measurements: the finite-horizon case..IEEE Trans. Signal Process. 58 (2010), 5, 2534-2543. MR 2789403, 10.1109/tsp.2010.2042489
Reference: [12] Ge, X., Han, Q.-L.: Consensus of multiagent systems subject to partially accessible and overlapping Markovian network topologies..IEEE Trans. Cybernet. 47 (2017), 8, 1807-1819. 10.1109/tcyb.2016.2570860
Reference: [13] Ge, X., Han, Q.-L., Wang, Z.: A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks..IEEE Trans. Cybernet. 49 (2019), 1, 171-183. 10.1109/tcyb.2017.2769722
Reference: [14] Ge, X., Han, Q.-L., Wang, Z.: A threshold-parameter-dependent approach to designing distributed event-triggered $\mathcal{H}_{\infty}$ consensus filters over sensor networks..IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159. 10.1109/tcyb.2017.2789296
Reference: [15] Ge, X., Han, Q.-L., Zhang, X.-M., Ding, L., Yang, F.: Distributed event-triggered estimation over sensor networks: A survey. newblock{IEEE Trans. Cybernet. 50 (2019), 3, 1306-1320.. 10.1109/TCYB.2019.2917179
Reference: [16] Ge, X., Han, Q.-L., Zhong, M., Zhang, X.-M.: Distributed Krein space-based attack detection over sensor networks under deception attacks..Automatica 109 (2019), 108557. MR 3998774, 10.1016/j.automatica.2019.108557
Reference: [17] Hlinka, O., Sluciak, O., Hlawatsch, F., Djuric, P. M., Rupp, M.: Likelihood consensus and its application to distributed particle fitering..IEEE Transs. Signal Process. 60 (2012), 8, 4334-4349. MR 2960499, 10.1109/tsp.2012.2196697
Reference: [18] Julier, S. J., Uhlmann, J. K.: A non-divergent estimation algorithm in the presence of unknown correlations..In: Proc. American Control Conference, Albuquerque 1997, pp. 2369-2373. 10.1109/acc.1997.609105
Reference: [19] Kamal, A. T., Farrell, J. A., Roy-Chowdhury, A. K.: Information weighted consensus fiters and their application in distributed camera networks..IEEE Trans. Automat. Control 58 (2013), 12, 3112-3125. MR 3152272, 10.1109/tac.2013.2277621
Reference: [20] Kluge, S., Reif, K., Brokate, M.: Stochastic stability of the extended Kalman filter with intermittent observations..IEEE Trans. Automat. Control 55 (2010), 2, 514-518. MR 2604434, 10.1109/tac.2009.2037467
Reference: [21] Li, W., Wei, G., Ding, D., Liu, Y., Alsaadi, F. E.: A new look at boundedness of error covariance of Kalman filtering..IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 2, 309-314. 10.1109/tsmc.2016.2598845
Reference: [22] Liang, J., Wang, Z., Hayat, T., Alsaedi, A.: Distributed $\mathcal{H}_{\infty}$ state estimation for stochastic delayed 2-D systems with randomly varying nonlinearities over saturated sensor networks..Information Sciences 370 (2016), 708-724. 10.1016/j.ins.2015.11.020
Reference: [23] Lin, X., Boyd, S., Lall, S.: A scheme for robust distributed sensor fusion based on average consensus..In: Proc. 4th International Symposium on Information Processing in Sensor Networks 25 (2005), 63-70. 10.1109/ipsn.2005.1440896
Reference: [24] Liu, Q., Wang, Z., He, X., Ghinea, G., Alsaadi, F. E.: A resilient approach to distributed filter design for time-varying systems under stochastic nonlinearities and sensor degradation..IEEE Trans. Signal Process. 65 (2017), 5, 1300-1309. MR 3597280, 10.1109/tsp.2016.2634541
Reference: [25] Liu, Q., Wang, Z., He, X., Zhou, D.: On Kalman-consensus filtering with random link failures over sensor networks..IEEE Trans. Automat. Control 63 (2018), 8, 2701-2708. MR 3846001, 10.1109/tac.2017.2774601
Reference: [26] Ma, L., Wang, Z., Lam, H. K., Kyriakoulis, N.: Distributed event based set-membership filtering for a class of nonlinear systems with sensor saturations over sensor networks..IEEE Trans. Cybernet. 47 (2017), 11, 3772-3783. 10.1109/tcyb.2016.2582081
Reference: [27] Olfati-Saber, R.: Distributed Kalman filter with embedded consensus filters..In: Proc. Conference on Decision and Control, and the European Control Conference, Seville 2005, pp. 8179-8184. 10.1109/cdc.2005.1583486
Reference: [28] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays..IEEE Trans. Automat. Control 49 (2004), 9, 1520-1533. MR 2086916, 10.1109/tac.2004.834113
Reference: [29] Olfati-Saber, R., Fax, J. A., Murray, R. M.: Consensus and cooperation in networked multi-agent systems..Proc. IEEE 95 (2007), 1, 215-233. 10.1109/jproc.2006.887293
Reference: [30] Paradis, L., Han, Q.: A survey of fault management in wireless sensor networks..J. Network Systems Mgt 5 (2007), 2, 171-190. 10.1007/s10922-007-9062-0
Reference: [31] Rapp, K., Nyman, P. O.: Stability properties of the discrete-time extended Kalman filter..IFAC Proc. 37 (2004), 13, 1377-1382. 10.1016/s1474-6670(17)31420-9
Reference: [32] Reif, K., Unbehauen, R.: The extended Kalman filter as an exponential observer for nonlinear systems..IEEE Trans. Signal Process. 47 (1999), 8, 2324-2328. MR 1732532, 10.1109/78.774779
Reference: [33] al, K. Reif et: Stochastic stability of the discrete-time extended Kalman filter..IEEE Trans. Automat. Control 44 (1999), 4, 714-728. MR 1684426, 10.1109/9.754809
Reference: [34] Ren, W., Beard, R. W., Atkins, E. M.: Information consensus in multivehicle cooperative control..IEEE Control Systems Magazine 27 (2007), 11, 71-82. MR 3064077, 10.1109/mcs.2007.338264
Reference: [35] Simonetto, A., Keviczky, T., Babuska, R.: Distributed nonlinear estimation for robot localization using weighted consensus..In: IEEE International Conference Robotics and Automation, Alaska 2010, pp. 3026-3031. 10.1109/robot.2010.5509143
Reference: [36] Ugrinovskii, V.: Conditions for detectability in distributed consensus-based observer networks..IEEE Trans. Automat. Control 58 (2013), 10, 2659-2664. MR 3106075, 10.1109/tac.2013.2256675
Reference: [37] Wei, G., Li, W., Ding, D., Liu, Y.: Stability analysis of covariance intersection-based Kalman consensus filtering for time-varying systems..IEEE Trans. Systems Man Cybernet.: Systems (2018), 1-12. 10.1109/tsmc.2018.2855741
Reference: [38] Willner, D., Chang, C., Dunn, K.: Kalman filter algorithms for a multi-sensor system..In: IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes 1976, pp. 570-574. 10.1109/cdc.1976.267794
Reference: [39] Xiao, S., Han, Q.-L., Ge, X., Zhang, Y.: Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks..IEEE Trans. Cybernet. 50 (2019), 3, 1220-1229. 10.1109/tcyb.2019.2900478
Reference: [40] Yuan, Y., Yuan, H., Guo, L., Yang, H., Sun, S.: Resilient control of networked control system under DoS attacks: a unified game approach..IEEE Tran. Industr. Inform. 12 (2016), 2, 1786-1794. 10.1109/tii.2016.2542208
Reference: [41] Zhang, X.-M., Han, Q.-L.: A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs,..IEEE Trans. Cybernet. 46 (2016), 12, 2745-2757. 10.1109/tcyb.2015.2487420
Reference: [42] Zhang, X.-M., Han, Q.-L., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C.: Networked control systems: a survey of trends and techniques..IEEE/CAA J. Automat. Sinica. (2019), 1-17. MR 3748030, 10.1109/JAS.2019.1911651
Reference: [43] Zuo, Z., Han, Q.-L., Ning, B., Ge, X., Zhang, X.-M.: An overview of recent advances in fixed-time cooperative control of multi-agent systems..IEEE Trans. Industr. Inform. 14 (2018), 6, 2322-2334. MR 3932129, 10.1109/tii.2018.2817248
Reference: [44] Zou, L., Wang, Z., Han, Q.-L., Zhou, D. H.: Ultimate boundedness control for networked systems with Try-Once-Discard protocol and uniform quantization effects..IEEE Trans. Automat. Control 62 (2017), 12, 6582-6588. MR 3743543, 10.1109/tac.2017.2713353
Reference: [45] Zou, L., Wang, Z., Han, Q.-L., Zhou, D. H.: Recursive filtering for time-varying systems with random access protocol..IEEE Trans. Automat. Control 60 (2019), 2, 720-727. MR 3912120, 10.1109/tac.2018.2833154
.

Files

Files Size Format View
Kybernetika_56-2020-1_10.pdf 606.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo