[1] Adamko, P.: 
On the volume of points at distance at least 1 in the unit four-dimensional cube.  J. Geom. Graph. 23 (2019), 1–3. 
MR 3982404[2] Adamko, P., Bálint, V.: Universal asymptotical results on packing of cubes.  Stud. Univ. Žilina Math. Ser. 28 (2016), 5–16.
[3] Ament, P., Blind, G.: 
Packing equal circles in a square.  Studia Sci. Math. Hungar. 36 (2000), 313–316. 
MR 1798737[4] Andreescu, T., Mushkarov, O.: A note on the Malfatti problem.  Math. Reflections 4 (2006), 1–7.
[6] Bálint, V.: Poznámka k jednému ukladaciemu problému.  Práce a Štúdie Vysokej školy dopravy a spojov v Žiline, séria Mat.–Fyz. 8 (1990), 7–12.
[7] Bálint, V.: 
A packing problem and the geometrical series.  In: Nešetřil, J., Fiedler, M. (eds.): Fourth Czechoslovakian symposium on combinatorics, graphs and complexity, held in Prachatice, Czechoslovakia, 1990. Proceedings. Annals of Discrete Mathematics, vol. 51. North-Holland, Amsterdam, 1992, 17–21. 
MR 1206238[9] Bálint, V.: 
Maximization of the sum of areas.  Stud. Univ. Žilina Math. Ser. 24 (2010), 1–8. 
MR 2829522[10] Bálint, V.: Dva typy najlepších uložení systému štvorcov v obdĺžniku.  Proceedings of Symposium on Computer Geometry, STU, Bratislava, 2011, 13–16.
[11] Bálint, V., Adamko, P.: Minimalizácia objemu kvádra pre uloženie troch kociek v dimenzii 4.  G, Slov. Čas. Geom. Graf. 12 (2015), 5–16.
[12] Bálint, V., Adamko, P.: Minimization of the container for packing of three cubes in dimension 4.  Proceedings of Slovak–Czech Conference on Geometry and Graphics, STU, Bratislava, 2015, 13–24.
[13] Bálint, V., Adamko, P.: Minimization of the parallelepiped for packing of three cubes in dimension 6.  Proceedings of APLIMAT 2016 – 15th Conference on Applied Mathematics, Bratislava, 2016, 44–55.
[14] Bálint, V., Bálint, V., jr.: Unicity of one optimal arrangement of points in the cube.  Proceedings of Symposium on Computer Geometry, Bratislava, 2001, 8–10.
[15] Bálint, V., Bálint, V., jr.: 
On the volume of points at distance at least one in the unit cube.  Geombinatorics 12 (2003), 157–166. 
MR 1972054[16] Bálint, V., Bálint, V., jr.: Horný odhad pre rozmiestňovanie bodov v kocke.  Sborník 5. konference o matematice a fyzice na VŠT, Brno, 2007, 32–35.
[17] Bálint, V., Bálint, V., jr.: 
On the maximum volume of points at least one unit away from each other in the unit $n$-cube.  Periodica Math. Hung. 57 (2008), 83–91. 
DOI 10.1007/s10998-008-7083-2 | 
MR 2448399[18] Bálint, V., Bálint, V., jr.: Umiestňovnie bodov do jednotkovej kocky.  G, Slov. Čas. Geom. Graf. 5 (2008), 5–12.
[20] Bálint, V., Bálint, V., jr.: 
Packing of points into the unit 6-dimensional cube.  Contrib. Discrete Math. 7 (2012), 51–57. 
MR 2956337[22] Bezdek, A., Fodor, F.: Extremal triangulations of convex polygons.  Symmetry: Culture and Science 21 (2010), 333–340.
[23] Böröczky, K.: 
The Newton-Gregory problem revisited.  In: Bezdek, A. (ed.): Discrete Geometry, Marcel Dekker, New York, 2003, 103–110. 
MR 2034712[24] Böröczky, K., jr.: 
Finite packing and covering.  Cambridge Univ. Press, 2004. 
MR 2078625[25] Brass, P., Moser, W. O. J., Pach, J.: 
Research problems in discrete geometry.  Springer, New York, 2005. 
MR 2163782[26] Cohn, H., Elkies, N. D.: 
New upper bounds on sphere packings I.  Ann. of Math. (2) 157 (2003), 689–714. 
MR 1973059[27] Croft, H. T., Falconer, K. J., Guy, R. K.: 
Unsolved problems in geometry.  2nd ed., Springer-Verlag, New York–Berlin–Heidelberg, 1994. 
MR 1316393[28] Edel, Y., Rains, E. M., Sloane, N. J. A.: 
On kissing volumes in dimensions 32 to 128.  Electron. J. Combin. 5 (1988), #R22. 
MR 1614304[29] Erdős, P.: 
On some problems of elementary and combinatorial geometry.  Ann. Mat. Pura Appl., Ser. IV 103 (1975), 99–108. 
DOI 10.1007/BF02414146 | 
MR 0411984[30] Erdős, P.: 
Some more problems on elementary geometry.  Austral. Math. Soc. Gaz. 5 (1978), 52–54. 
MR 0509363[31] Fejes Tóth, L.: 
Remarks on a theorem of R. M. Robinson.  Studia Sci. Math. Hung. 4 (1969), 441–445. 
MR 0254744[32] Fejes Tóth, L.: 
Lagerungen in der Ebene, auf der Kugel und im Raum.  2. Auflage, Springer-Verlag, 2003. 
MR 0353117[33] Fejes Tóth, G., Kuperberg, W.: 
Packing and covering with convex sets.  In: Gruber, P. M. et al. (ed.): Handbook of convex geometry, Volume B, North-Holland, Amsterdam, 1993, 799–860. 
MR 1242997[34] Ferguson, S. P., Hales, T. C.: 
The Kepler conjecture: The Hales–Ferguson proof.  Springer, New York, 2011. 
MR 3075372[36] Fodor, F.: 
The densest packing of 12 congruent circles in a circle.  Beitr. Algebra Geom. 21 (2000), 401–409. 
MR 1801430[37] Fodor, F.: 
Packing 14 congruent circles in a circle.  Stud. Univ. Žilina Math. Ser. 16 (2003), 25–34. 
MR 2065745[38] Fodor, F.: 
The densest packing of 13 congruent circles in a circle.  Beitr. Algebra Geom. 21 (2003), 431–440. 
MR 2017043[39] Gauss, C. F.: 
Recension der Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seber.  J. Reine Angew. Math. 20 (1840), 312–320. 
MR 1578241[40] Graham, R. L., Lubachevsky, B. D.: 
Dense packings of equal disks in an equilateral triangle: from 22 to 34 and beyond.  Electron. J. Combin. 2 (1995), #A1. 
DOI 10.37236/1223 | 
MR 1309122[42] Groemer, H.: 
Covering and packing properties of bounded sequences of convex sets.  Mathematica 29 (1982), 18–31. 
MR 0673502[43] Guy, R. K.: 
Problems.  In: Kelly, L. M. (ed.): The geometry of metric and linear spaces. Proceedings of a conference held at Michigan State University, East Lansing, June 17–19, 1974, Springer-Verlag, 1975, 233–244. 
MR 0388240[49] Hales, T. C.: 
Cannonballs and honeycombs.  Notices Amer. Math. Soc. 47 (2000), 440–449. 
MR 1745624[50] Hales, T. C., Ferguson, S. P.: 
The Kepler conjecture.  Discrete Comput. Geom. 36 (2006), 1–269. 
MR 3075372[51] Hortobágyi, I.: 
Über die Scheibenklassen bezügliche Newtonsche Zahl der konvexen Scheiben.  Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 18 (1975), 123–127. 
MR 0425775[52] Horvát, G. Á.: 
Packing points into a unit cube in higher space.  Stud. Univ. Žilina Math. Ser. 24 (2010), 23–28. 
MR 2829525[53] Hougardy, S.: 
On packing squares into a rectangle.  Tech. Report 101007. Forschungsinstitut für Diskrete Mathematik, March 2010. 
MR 2805963[55] Hsiang, W.-Y.: 
A rejoinder to T. C. Hales’ article: The status of the Kepler conjecture.  Math. Intelligencer 17 (1994), 35–42. 
MR 1319992[59] Joós, A.: Pontok elhelyezése egységkockában.  PhD tézisek, 2008.
[60] Joós, A.: 
On the volume of points at distance at least 1 in the 5-dimensional unit cube.  Acta Sci. Math. 76 (2010), 217–231. 
DOI 10.1007/BF03549837 | 
MR 2668418[62] Kabatjanskij, G. A., Levenshtein, V. I.: 
Bounds for packings on a sphere and space.  Problemy Peredachi Informatsii 14 (1978), 3–24. 
MR 0514023[63] Kepler, J.: Strena seu de nive sexangula.  Tampach, Frankfurt, 1611. English translation: The six-cornered snowflake. Oxford, 1966.
[65] Kleitman, D. J., Krieger, M. M.: 
An optimal bound for two dimensional bin packing.  Proceedings of the 16th Annual Symposium on Foundations of Computer Science, IEEE Computer Society, 1975, 163–168. 
MR 0423195[69] Levenshtein, V. I.: 
On bounds for packings in $n$-dimensional Euclidean space.  Soviet Math. Dokl. 20 (1979), 417–421. 
MR 0529659[71] Malfatti, G.: Memoria sopra un problema sterotomico.  Memorie di Matematica e di Fisica della Societa Italiana delle Scienze 10 (1803), 235–244.
[73] Mauldin, R. D.: 
The Scottish Book.  Birkhäuser, 1981. 
MR 0666400[76] Melissen, J. B. M.: 
Densest packing of six equal circles in a square.  Elem. Math. 49 (1994), 27–31. 
MR 1261756[78] Melissen, J. B. M.: 
Densest packing of eleven congruent circles in an equilateral triangle.  Acta Math. 65 (1994), 389–393. 
MR 1281448[81] Moser, L.: Poorly formulated unsolved problems of combinatorial geometry.  1963.
[83] Moser, W. O. J., Pach, J.: 
Research problems in discrete geometry.  McGill University, Montreal, 1986, 1993. 
MR 1106701[85] Musin, O. R.: 
The kissing volume in four dimensions.  Ann. of Math. (2) 168 (2008), 1–32. 
MR 2415397[86] Novotný, P.: 
A note on packing of squares.  Studies Univ. Žilina Mat.-Phys. Ser. A 10 (1995), 35–39. 
MR 1437834[87] Novotný, P.: 
On packing of squares into a rectangle.  Arch. Math. (Brno) 32 (1996), 75–83. 
MR 1407340[88] Novotný, P.: 
On packing of four and five squares into a rectangle.  Note Mat. 19 (1999), 199–206. 
MR 1816873[89] Novotný, P.: Využitie počítača pri riešení ukladacieho problému.  Proceedings of Symposium on Computational Geometry, STU, Bratislava, 2002, 60–62.
[90] Novotný, P.: Pakovanie troch kociek.  Proceedings of Symposium on Computer Geometry, STU, Bratislava, 2006, 117–119.
[91] Novotný, P.: Najhoršie pakovateľné štyri kocky.  Proceedings of Symposium on Computer Geometry, STU, Bratislava, 2007, 78–81.
[92] Novotný, P.: Ukladanie kociek do kvádra.  Proceedings of Symposium on Computer Geometry, STU, Bratislava, 2011, 100–103.
[93] Nurmela, K. J., Östergård, P. R. J.: 
More optimal packings of equal circles in a square.  Discrete Comput. Geom. 22 (1999), 439–457. 
DOI 10.1007/PL00009472 | 
MR 1706578[98] Peikert, R., Würtz, D., Monagan, M., de Groot, C.: 
Packing circles in a square: A review and new results.  In: Kall, P. (ed.): System modelling and optimization. Proceedings of the 15th IFIP conference, Zurich, Switzerland, September 2–6, 1991, Springer-Verlag, Berlin, 1992, 45–54. 
MR 1182322[101] Sedliačková, Z.: 
Packing three cubes in 8-dimensional space.  J. Geom. Graph. 22 (2018), No. 2, 217–223. 
MR 3919006[106] Thue, A.: 
On the densest packing of congruent circles in the plane.  Skr. Vidensk.-Selsk. Christiana 1 (1910), 3–9. 
MR 2994977