Previous |  Up |  Next

Article

Keywords:
nonconvex sweeping process; functional differential inclusion; uniformly $\varrho$-prox-regular set
Summary:
We prove an existence theorem of solutions for a nonconvex sweeping process with nonconvex noncompact perturbation in Hilbert space. We do not assume that the values of the orient field are compact.
References:
[1] Abdo M. S., Ibrahim A. G., Panchal S. K.: State-dependent delayed sweeping process with a noncompact perturbation in Banach spaces. Acta Univ. Apulensis Math. Inform. 54 (2018), 139–159. MR 3830496
[2] Aitalioubrahim M.: On noncompact perturbation of nonconvex sweeping process. Comment. Math. Univ. Carolin. 53 (2012) no. 1, 65–77. MR 2880911
[3] Aubin J.-P., Cellina A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Grundlehren der Mathematischen Wissenschaften, 264, Springer, Berlin, 1984. DOI 10.1007/978-3-642-69512-4 | MR 0755330
[4] Bounkhel M., Castaing C.: State dependent sweeping process in $p$-uniformly smooth and $q$-niformly convex Banach spaces. Set-Valued Var. Anal. 20 (2012), no. 2, 187–201. MR 2913675
[5] Bounkhel M., Thibault L.: Nonconvex sweeping process and prox-regularity in Hilbert space. J. Nonlinear Convex Anal. 6 (2005), no. 2, 359–374. MR 2159846 | Zbl 1086.49016
[6] Castaing C., Monteiro Marques M. D. P.: Topological properties of solution sets for sweeping processes with delay. Portugal. Math. 54 (1997), no. 4, 485–507. MR 1489988
[7] Castaing C., Valadier M.: Convex Analysis and Measurable Multifunctions. Lectures Notes in Mathematics, 580, Springer, Berlin, 1977. DOI 10.1007/BFb0087688 | MR 0467310 | Zbl 0346.46038
[8] Clarke F. H., Stern R. J., Wolenski P. R.: Proximal smoothness and the lower-$C^2$ property. J. Convex Anal. 2 (1995), no. 1–2, 117–144. MR 1363364
[9] Edmond J. F.: Delay perturbed sweeping process. Set-Valued Anal. 14 (2006), no. 3, 295–317. DOI 10.1007/s11228-006-0021-9 | MR 2252653 | Zbl 1122.34060
[10] Edmond J. F., Thibault L.: Relaxation of an optimal control problem involving a perturbed sweeping process. Math. Program. 104 (2005), no. 2–3, Ser. B, 347–373. DOI 10.1007/s10107-005-0619-y | MR 2179241
[11] Edmond J. F., Thibault L.: $BV$ solutions of nonconvex sweeping process differential inclusion with perturbation. J. Differential Equations 226 (2006), no. 1, 135–179. DOI 10.1016/j.jde.2005.12.005 | MR 2232433
[12] Haddad T., Thibault L.: Mixed semicontinuous perturbations of nonconvex sweeping processes. Math. Program. 123 (2010), no. 1, Ser. B, 225–240. DOI 10.1007/s10107-009-0315-4 | MR 2577329
[13] Moreau J. J.: Application of convex analysis to the treatment of elastoplastic systems. Applications of Methods of Functional Analysis to Problems in Mechanics, Lecture Notes in Mathematics, 503, Springer, Berlin, 1976, 56–89.
[14] Moreau J.-J.: Evolution problem associated with a moving convex set in Hilbert space. J. Differential Equations 26 (1977), no. 3, 347–374. DOI 10.1016/0022-0396(77)90085-7 | MR 0508661
[15] Moreau J. J.: Unilateral contact and dry friction in finite freedom dynamics. Nonsmooth Mechanics and Applications, International Centre for Mechanical Sciences (CISM), 302, Springer, Vienna, 1988, 1–82. Zbl 0703.73070
[16] Sene M., Thibault L.: Regularization of dynamical systems associated with prox-regular moving sets. J. Nonlinear Convex Anal. 15 (2014), no. 4, 647–663. MR 3222899
[17] Poliquin R. A., Rockafellar R. T., Thibault L.: Local differentiability of distance functions. Trans. Amer. Math. Soc. 352 (2000), no. 11, 5231–5249. DOI 10.1090/S0002-9947-00-02550-2 | MR 1694378 | Zbl 0960.49018
[18] Thibault L.: Sweeping process with regular and nonregular sets. J. Differential Equations 193 (2003), no. 1, 1–26. DOI 10.1016/S0022-0396(03)00129-3 | MR 1994056 | Zbl 1037.34007
[19] Zhu Q. J.: On the solution set of differential inclusions in Banach space. J. Differential Equations 93 (1991), no. 2, 213–237. DOI 10.1016/0022-0396(91)90011-W | MR 1125218 | Zbl 0735.34017
Partner of
EuDML logo