Previous |  Up |  Next

Article

Title: Bounds for the counting function of the Jordan-Pólya numbers (English)
Author: De Koninck, Jean-Marie
Author: Doyon, Nicolas
Author: Razafindrasoanaivolala, A. Arthur Bonkli
Author: Verreault, William
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 56
Issue: 3
Year: 2020
Pages: 141-152
Summary lang: English
.
Category: math
.
Summary: A positive integer $n$ is said to be a Jordan-Pólya number if it can be written as a product of factorials. We obtain non-trivial lower and upper bounds for the number of Jordan-Pólya numbers not exceeding a given number $x$. (English)
Keyword: Jordan-Pólya numbers
Keyword: factorial function
Keyword: friable numbers
MSC: 11A41
MSC: 11A51
MSC: 11B65
MSC: 11N05
idZBL: Zbl 07250675
idMR: MR4156441
DOI: 10.5817/AM2020-3-141
.
Date available: 2020-09-02T08:49:36Z
Last updated: 2020-11-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148292
.
Reference: [1] De Angelis, V.: Stirling’s series revisited.Amer. Math. Monthly 116 (2009), 839–843. MR 2572092, 10.4169/000298909X474918
Reference: [2] De Koninck, J.-M., Luca, F.: Analytic Number Theory: Exploring the Anatomy of Integers.Graduate Studies in Mathematics, vol. 134, American Mathematical Society, Providence, Rhode Island, 2012. MR 2919246
Reference: [3] Ellison, W., Ellison, F.: Prime Numbers.Hermann, Paris, 1985. MR 0814687
Reference: [4] Ennola, V.: On numbers with small prime divisors.Ann. Acad. Sci. Fenn. Ser. AI 440 (1969), 16 pp. MR 0244175
Reference: [5] Erdös, P., Graham, R.L.: On products of factorials.Bull. Inst. Math. Acad. Sinica 4 (2) (1976), 337–355. MR 0460262
Reference: [6] Feller, W.: An introduction to probability theory and its applications.Vol. I, Third edition, John Wiley $\&$ Sons, Inc., New York-London-Sydney, 1968, xviii+509 pp. MR 0228020
Reference: [7] Granville, A.: Smooth numbers: computational number theory and beyond. Algorithmic number theory: lattices, number fields, curves and cryptography.Math. Sci. Res. Inst. Publ. 44 (2008), 267–323, Cambridge Univ. Press, Cambridge. MR 2467549
Reference: [8] Luca, F.: On factorials which are products of factorials.Math. Proc. Cambridge Philos. Soc. 143 (3) (2007), 533–542. MR 2373957, 10.1017/S0305004107000308
Reference: [9] Nair, S.G., Shorey, T.N.: Lower bounds for the greatest prime factor of product of consecutive positive integers.J. Number Theory 159 (2016), 307–328. MR 3412724, 10.1016/j.jnt.2015.07.014
Reference: [10] Rosser, J.B.: The $n$-th prime is greater than $n\log n$.Proc. London Math. Soc. (2) 45 (1938), 21–44. MR 1576808
Reference: [11] Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers.Illinois J. Math. 6 (1962), 64–94. MR 0137689, 10.1215/ijm/1255631807
Reference: [12] Tenenbaum, G.: Introduction à la théorie analytique des nombres.Collection Échelles, Belin, 2008. MR 0675777
.

Files

Files Size Format View
ArchMathRetro_056-2020-3_2.pdf 506.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo