Title:
|
Norm inequalities for the difference between weighted and integral means of operator differentiable functions (English) |
Author:
|
Dragomir, Silvestru Sever |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
56 |
Issue:
|
3 |
Year:
|
2020 |
Pages:
|
183-197 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $f$ be a continuous function on $I$ and $A$, $B\in \mathcal{SA}_{I}\left( H\right) $, the convex set of selfadjoint operators with spectra in $I$. If $A\neq B$ and $f$, as an operator function, is Gateaux differentiable on \begin{equation*} [ A,B] :=\left\{ ( 1-t) A+tB\mid t\in \left[ 0,1\right] \right\}\,, \end{equation*} while $p\colon \left[ 0,1\right] \rightarrow \mathbb{R}$ is Lebesgue integrable, then we have the inequalities \begin{align*} \Big\Vert \int_{0}^{1}p\left( \tau \right)& f\left( \left( 1-\tau \right) A+\tau B\right) d\tau -\int_{0}^{1}p\left( \tau \right) \,d\tau \int_{0}^{1}f\left( \left( 1-\tau \right) A+\tau B\right)\, d\tau \Big\Vert \\ & \leq \int_{0}^{1}\tau ( 1-\tau) \Big\vert \frac{\int_{\tau }^{1}p\left( s\right)\, ds}{1-\tau }-\frac{\int_{0}^{\tau }p\left( s\right)\, ds}{\tau }\Big\vert \left\Vert \nabla f_{\left( 1-\tau \right) A+\tau B}\left( B-A\right) \right\Vert \,d\tau \\ & \leq \frac{1}{4}\int_{0}^{1}\Big\vert \frac{\int_{\tau }^{1}p\left( s\right)\, ds}{1-\tau }-\frac{\int_{0}^{\tau }p\left( s\right)\, ds}{\tau } \Big\vert \left\Vert \nabla f_{\left( 1-\tau \right) A+\tau B}\left( B-A\right) \right\Vert\, d\tau\,, \end{align*} where $\nabla f$ is the Gateaux derivative of $f$. (English) |
Keyword:
|
operator Gâteaux differentiable functions |
Keyword:
|
integral inequalities |
Keyword:
|
Hermite-Hadamard inequality |
Keyword:
|
Féjer’s inequalities |
Keyword:
|
weighted integral means |
MSC:
|
47A63 |
MSC:
|
47A99 |
idZBL:
|
Zbl 07250678 |
idMR:
|
MR4156444 |
DOI:
|
10.5817/AM2020-3-183 |
. |
Date available:
|
2020-09-02T08:54:18Z |
Last updated:
|
2020-11-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148295 |
. |
Reference:
|
[1] Agarwal, R.P., Dragomir, S.S.: A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces.Comput. Math. Appl. 59 (12) (2010), 3785–3812. MR 2651854, 10.1016/j.camwa.2010.04.014 |
Reference:
|
[2] Bacak, V., Vildan, T., Türkmen, R.: Refinements of Hermite-Hadamard type inequalities for operator convex functions.J. Inequal. Appl. 2013 (262) (2013), 10 pp. MR 3068637 |
Reference:
|
[3] Darvish, V., Dragomir, S.S., Nazari, H.M., Taghavi, A.: Some inequalities associated with the Hermite-Hadamard inequalities for operator $h$-convex functions.Acta Comment. Univ. Tartu. Math. 21 (2) (2017), 287–297. MR 3745136 |
Reference:
|
[4] Dragomir, S.S.: Hermite-Hadamard’s type inequalities for operator convex functions.Appl. Math. Comput. 218 (3) (2011), 766–772. MR 2831305 |
Reference:
|
[5] Dragomir, S.S.: Operator Inequalities of the Jensen, Čebyšev and Grüss Type.Springer Briefs in Mathematics. Springer, New York, 2012. MR 2866026 |
Reference:
|
[6] Dragomir, S.S.: Bounds for the difference between weighted and integral means of operator convex function.RGMIA Res. Rep. Coll. 22 (2019), 14 pp., Art. 97, [Online shttp://rgmia.org/papers/v22/v22a97.pdf]. |
Reference:
|
[7] Dragomir, S.S.: Reverses of operator Féjer’s inequalities.RGMIA Res. Rep. Coll. 22 (2019), 14 pp., Art. 91, [Online http://rgmia.org/papers/v22/v22a91.pdf]. |
Reference:
|
[8] Dragomir, S.S.: Some Hermite-Hadamard type inequalities for operator convex functions and positive maps..Spec. Matrices 7 (2019), 38–51, Preprint RGMIA Res. Rep. Coll. 19 (2016), Art. 80. [Online http://rgmia.org/papers/v19/v19a80.pdf]. MR 3940941, 10.1515/spma-2019-0005 |
Reference:
|
[9] Furuta, T., Mićić Hot, J., Pečarić, J., Seo, Y.: Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space.Element, Zagreb, 2005. MR 3026316 |
Reference:
|
[10] Ghazanfari, A.G.: The Hermite-Hadamard type inequalities for operator $s$-convex functions.J. Adv. Res. Pure Math. 6 (3) (2014), 52–61. MR 3239991, 10.5373/jarpm.1876.110613 |
Reference:
|
[11] Ghazanfari, A.G.: Hermite-Hadamard type inequalities for functions whose derivatives are operator convex.Complex Anal. Oper. Theory 10 (8) (2016), 1695–1703. MR 3558363, 10.1007/s11785-016-0542-7 |
Reference:
|
[12] Han, J., Shi, J.: Refinements of Hermite-Hadamard inequality for operator convex function.J. Nonlinear Sci. Appl. 10 (11) (2017), 6035–6041. MR 3738820, 10.22436/jnsa.010.11.38 |
Reference:
|
[13] Li, B.: Refinements of Hermite-Hadamard’s type inequalities for operator convex functions.Int. J. Contemp. Math. Sci. 8 (9–12) (2013), 463–467. MR 3106565, 10.12988/ijcms.2013.13046 |
Reference:
|
[14] Pedersen, G.K.: Operator differentiable functions.Publ. Res. Inst. Math. Sci. 36 (1) (2000), 139–157. MR 1749015, 10.2977/prims/1195143229 |
Reference:
|
[15] Taghavi, A., Darvish, V., Nazari, H.M., Dragomir, S.S.: Hermite-Hadamard type inequalities for operator geometrically convex functions.Monatsh. Math. 181 (1) (2016), 187–203. MR 3535913, 10.1007/s00605-015-0816-6 |
Reference:
|
[16] Vivas Cortez, M., Hernández, J.E.H.: On some new generalized Hermite-Hadamard-Fejér inequalities for product of two operator $h$-convex functions.Appl. Math. Inf. Sci. 11 (4) (2017), 983–992. MR 3677622, 10.18576/amis/110405 |
Reference:
|
[17] Vivas Cortez, M., Hernández, J.E.H.: Refinements for Hermite-Hadamard type inequalities for operator $h$-convex function.Appl. Math. Inf. Sci. 11 (5) (2017), 1299–1307. MR 3704419, 10.18576/amis/110507 |
Reference:
|
[18] Vivas Cortez, M., Hernández, J.E.H., Azócar, L.A.: Some new generalized Jensen and Hermite-Hadamard inequalities for operator $h $-convex functions.Appl. Math. Inf. Sci. 11 (2) (2017), 383–392. MR 3704419, 10.18576/amis/110205 |
Reference:
|
[19] Wang, S.-H.: Hermite-Hadamard type inequalities for operator convex functions on the co-ordinates.J. Nonlinear Sci. Appl. 10 (3) (2017), 1116–1125. MR 3646673, 10.22436/jnsa.010.03.22 |
Reference:
|
[20] Wang, S.-H.: New integral inequalities of Hermite-Hadamard type for operator m-convex and $(\alpha ,m)$-convex functions.J. Comput. Anal. Appl. 22 (4) (2017), 744–753. MR 3616847 |
. |