Previous |  Up |  Next

Article

Title: Estimating the conditional expectations for continuous time stationary processes (English)
Author: Morvai, Gusztáv
Author: Weiss, Benjamin
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 3
Year: 2020
Pages: 410-431
Summary lang: English
.
Category: math
.
Summary: One of the basic estimation problems for continuous time stationary processes $X_t$, is that of estimating $E\{X_{t+\beta}| X_s : s \in [0, t]\}$ based on the observation of the single block $\{X_s : s \in [0, t]\}$ when the actual distribution of the process is not known. We will give fairly optimal universal estimates of this type that correspond to the optimal results in the case of discrete time processes. (English)
Keyword: nonparametric estimation
Keyword: continuous time stationary processes
MSC: 60G10
MSC: 60G25
MSC: 62G05
idZBL: Zbl 07250731
idMR: MR4131737
DOI: 10.14736/kyb-2020-3-0410
.
Date available: 2020-09-02T09:16:34Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148308
.
Reference: [1] Algoet, P.: Universal schemes for prediction, gambling and portfolio selection..Ann. Probab. 20 (1992), 901-941. MR 1159579, 10.1214/aop/1176989811
Reference: [2] Algoet, P.: The strong law of large numbers for sequential decisions under uncertainty..IEEE Trans. Inform. Theory 40 (1994), 609-633. MR 1295308, 10.1109/18.335876
Reference: [3] Algoet, P.: Universal schemes for learning the best nonlinear predictor given the infinite past and side information..IEEE Trans. Inform. Theory 45 (1999), 1165-1185. Zbl 0959.62078, MR 1686250, 10.1109/18.761258
Reference: [4] Bailey, D.: Sequential Schemes for Classifying and Predicting Ergodic Processes..Ph.D. Thesis, Stanford University 1976. MR 2626644
Reference: [5] Breiman, L.: The individual ergodic theorem of information theory,.Ann. Math. Statist. 28 (1957), 809-811. MR 0092710, 10.1214/aoms/1177706899
Reference: [6] Cover, T.: Open problems in information theory..In: 1975 IEEE-USSR Joint Workshop on Information Theory 1975, pp. 35-36. MR 0469507
Reference: [7] Chow, Y. S., Teicher, H.: Probability Theory: Independence, Interchangeability, Martingales. Second edition..Springer-Verlag, New York 1978. MR 0513230
Reference: [8] Doob, J. L.: Stochastic Processes..Wiley, 1990 MR 1038526
Reference: [9] Elton, J.: A law of large numbers for identically distributed martingale differences..Ann. Probab. 9 (1981), 405-412. MR 0614626, 10.1214/aop/1176994414
Reference: [10] Györfi, L., Kohler, M., Krzyzak, A., Walk, H.: A Distribution-Free Theory of Nonparametric Regression..Springer Series in Statistics, Springer-Verlag, New York 2002. MR 1920390, 10.1007/b97848
Reference: [11] Györfi, L., Morvai, G., Yakowitz, S.: Limits to consistent on-line forecasting for ergodic time series..IEEE Trans. Inform. Theory 44 (1998), 886-892. Zbl 0899.62122, MR 1607704, 10.1109/18.661540
Reference: [12] Györfi, L., Ottucsák, Gy.: Sequential prediction of unbounded stationary time series..IEEE Trans. Inform. Theory 53 (2007), 1866-1872. MR 2317147, 10.1109/tit.2007.894660
Reference: [13] Györfi, L., Ottucsák, Gy., Walk, H.: Machine Learning for Financial Engineering..Imperial College Press, London 2012. 10.1142/p818
Reference: [14] Hall, P., Heyde, C. C.: Martingale Limit Theory and Its Application..Academic Prress, 1975. MR 0624435
Reference: [15] Maker, Ph. T.: The ergodic theorem for a sequence of functions..Duke Math. J. 6 (1940), 27-30. MR 0002028, 10.1215/s0012-7094-40-00602-0
Reference: [16] Morvai, G.: Estimation of Conditional Distribution for Stationary Time Series..Ph.D. Thesis, Technical University of Budapest 1994.
Reference: [17] Morvai, G., Yakowitz, S., Györfi, L.: Nonparametric inferences for ergodic, stationary time series..Ann. Statist. 24 (1996), 370-379. MR 1389896, 10.1214/aos/1033066215
Reference: [18] Morvai, G., Weiss, B.: Nonparametric sequential prediction for stationary processes..Ann. Prob. 39 (2011), 1137-1160. MR 2789586, 10.1214/10-aop576
Reference: [19] Neveu, J.: Mathematical Foundations of the Calculus of Probability..Holden-Day, 1965. MR 0198505
Reference: [20] Ornstein, D.: Guessing the next output of a stationary process..Israel J. of Math. 30 (1978), 292-296. MR 0508271, 10.1007/bf02761077
Reference: [21] Ryabko, B.: Prediction of random sequences and universal coding..Probl. Inform. Trans. 24 (1988), 87-96. Zbl 0666.94009, MR 0955983
Reference: [22] Scarpellini, B.: Predicting the future of functions on flows..Math. Systems Theory 12 (1979), 281-296. MR 0529563, 10.1007/bf01776579
Reference: [23] Scarpellini, B.: Entropy and nonlinear prediction..Probab. Theory Related Fields 50 (1079, 2, 165-178. MR 0551610, 10.1007/bf00533638
Reference: [24] Scarpellini, B.: Conditional expectations of stationary processes..Z. Wahrsch. Verw. Gebiete 56 (1981), 4, 427-441. MR 0621658, 10.1007/bf00531426
Reference: [25] Shields, P. C.: Cutting and stacking: a method for constructing stationary processes..IEEE Trans. Inform. Theory 37 (1991), 1605-1614. MR 1134300, 10.1109/18.104321
Reference: [26] Shiryayev, A. N.: Probability..Springer-Verlag, New York 1984. MR 0737192
Reference: [27] Weiss, B.: Single Orbit Dynamics..American Mathematical Society, 2000. MR 1727510
.

Files

Files Size Format View
Kybernetika_56-2020-3_2.pdf 531.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo