Previous |  Up |  Next

Article

Title: The $p$-nilpotency of finite groups with some weakly pronormal subgroups (English)
Author: Liu, Jianjun
Author: Chang, Jian
Author: Chen, Guiyun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 3
Year: 2020
Pages: 805-816
Summary lang: English
.
Category: math
.
Summary: For a finite group $G$ and a fixed Sylow $p$-subgroup $P$ of $G$, Ballester-Bolinches and Guo proved in 2000 that $G$ is $p$-nilpotent if every element of $P\cap G'$ with order $p$ lies in the center of $N_G(P)$ and when $p=2$, either every element of $P\cap G'$ with order $4$ lies in the center of $N_G(P)$ or $P$ is quaternion-free and $N_G(P)$ is $2$-nilpotent. Asaad introduced weakly pronormal subgroup of $G$ in 2014 and proved that $G$ is $p$-nilpotent if every element of $P$ with order $p$ is weakly pronormal in $G$ and when $p=2$, every element of $P$ with order $4$ is also weakly pronormal in $G$. These results generalized famous Itô's Lemma. We are motivated to generalize Ballester-Bolinches and Guo's Theorem and Asaad's Theorem. It is proved that if $p$ is the smallest prime dividing the order of a group $G$ and $P$, a Sylow $p$-subgroup of $G$, then $G$ is $p$-nilpotent if $G$ is $S_4$-free and every subgroup of order $p$ in $P\cap P^x\cap G^{\mathfrak {N_p}}$ is weakly pronormal in $N_G(P)$ for all $x\in G\setminus N_G(P)$, and when $p=2$, $P$ is quaternion-free, where $G^{\mathfrak {N_p}}$ is the $p$-nilpotent residual of $G$. (English)
Keyword: weakly pronormal subgroup
Keyword: normalizer
Keyword: minimal subgroup
Keyword: formation
Keyword: $p$-nilpotency
MSC: 20D10
MSC: 20D20
idZBL: 07250691
idMR: MR4151707
DOI: 10.21136/CMJ.2020.0546-18
.
Date available: 2020-09-07T09:39:59Z
Last updated: 2022-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148330
.
Reference: [1] Asaad, M.: On weakly pronormal subgroups of finite groups.J. Group Theory 17 (2014), 407-418. Zbl 1296.20016, MR 3200366, 10.1515/jgt-2013-0045
Reference: [2] Asaad, M., Ballester-Bolinches, A., Aguilera, M. C. Pedraza: A note on minimal subgroups of finite groups.Commun. Algebra 24 (1996), 2771-2776. Zbl 0856.20015, MR 1393283, 10.1080/00927879608542654
Reference: [3] Asaad, M., Ramadan, M.: On the intersection of maximal subgroups of a finite group.Arch. Math. 61 (1993), 206-214. Zbl 0787.20013, MR 1231153, 10.1007/BF01198715
Reference: [4] Ballester-Bolinches, A.: $\mathfrak H$-normalizers and local definitions of saturated formations of finite groups.Isr. J. Math. 67 (1989), 312-326. Zbl 0689.20036, MR 1029905, 10.1007/BF02764949
Reference: [5] Ballester-Bolinches, A., Beidleman, J. C., Feldman, A. D., Ragland, M. F.: On generalised pronormal subgroups of finite groups.Glasg. Math. J. 56 (2014), 691-703. Zbl 1322.20011, MR 3250272, 10.1017/S0017089514000159
Reference: [6] Ballester-Bolinches, A., Beidleman, J. C., Feldman, A. D., Ragland, M. F.: Finite groups in which pronormality and $\mathfrak F$-pronormality coincide.J. Group Theory 19 (2016), 323-329. Zbl 1344.20027, MR 3466598, 10.1515/jgth-2015-0035
Reference: [7] Ballester-Bolinches, A., Guo, X.: Some results on $p$-nilpotence and solubility of finite groups.J. Algebra 228 (2000), 491-496. Zbl 0961.20016, MR 1764575, 10.1006/jabr.1999.8274
Reference: [8] Ballester-Bolinches, A., Guo, X., Li, Y., Su, N.: On finite $p$-nilpotent groups.Monatsh. Math. 181 (2016), 63-70. Zbl 1369.20017, MR 3535904, 10.1007/s00605-015-0803-y
Reference: [9] Brewster, B., Martínez-Pastor, A., Pérez-Ramos, M. D.: Pronormal subgroups of a direct product of groups.J. Algebra 321 (2009), 1734-1745. Zbl 1200.20015, MR 2498266, 10.1016/j.jalgebra.2008.12.006
Reference: [10] Doerk, K., Hawkes, T.: Finite Soluble Groups.De Gruyter Expositions in Mathematics 4, Walter de Gruyter, Berlin (1992). Zbl 0753.20001, MR 1169099, 10.1515/9783110870138
Reference: [11] Dornhoff, L.: $M$-groups and $2$-groups.Math. Z. 100 (1967), 226-256. Zbl 0157.35503, MR 0217174, 10.1007/BF01109806
Reference: [12] Gorenstein, D.: Finite Groups.Harper's Series in Modern Mathematics, Harper {&} Row Publishers, New York (1968). Zbl 0185.05701, MR 0231903
Reference: [13] Guo, X. Y., Shum, K. P.: The influence of minimal subgroups of focal subgroups on the structure of finite groups.J. Pure Appl. Algebra 169 (2002), 43-50. Zbl 0997.20023, MR 1890184, 10.1016/S0022-4049(01)00062-7
Reference: [14] Guo, X., Shum, K. P.: On $p$-nilpotency and minimal subgroups of finte groups.Sci. China, Ser. A 46 (2003), 176-186. Zbl 1217.20010, MR 1978505, 10.1360/03ys9019
Reference: [15] Guo, X., Shum, K. P.: Permutability of minimal subgroups and $p$-nilpotentcy of finite groups.Isr. J. Math. 136 (2003), 145-155. Zbl 1048.20005, MR 1998107, 10.1007/BF02807195
Reference: [16] Guo, X., Shum, K. P.: $p$-nilpotence of finite groups and minimal subgroups.J. Algebra 270 (2003), 459-470. Zbl 1072.20020, MR 2019627, 10.1016/j.jalgebra.2003.05.004
Reference: [17] Itô, N.: Über eine zur Frattini-Gruppe duale Bildung.Nagoya Math. J. 9 (1955), 123-127 German. Zbl 0066.01401, MR 0074410, 10.1017/S0027763000023369
Reference: [18] Li, Y., Su, N., Wang, Y.: A generalization of Burnside's $p$-nilpotency criterion.J. Group Theory 20 (2017), 185-192. Zbl 1368.20014, MR 3592611, 10.1515/jgth-2016-0028
Reference: [19] Malinowska, I. A.: Finite groups all of whose small subgroups are pronormal.Acta Math. Hung. 147 (2015), 324-337. Zbl 1363.20011, MR 3420580, 10.1007/s10474-015-0531-8
Reference: [20] Navarro, G.: Pronormal subgroups and zeros of characters.Proc. Am. Math. Soc. 142 (2014), 3003-3005. Zbl 1309.20006, MR 3223355, 10.1090/S0002-9939-2014-12050-8
Reference: [21] Peng, T. A.: Finite groups with pro-normal subgroups.Proc. Am. Math. Soc. 20 (1969), 232-234. Zbl 0167.02302, MR 0232850, 10.1090/S0002-9939-1969-0232850-1
Reference: [22] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80, Springer, New York (1982). Zbl 0483.20001, MR 0648604, 10.1007/978-1-4419-8594-1
Reference: [23] Shi, J., Shi, W., Zhang, C.: A note on $p$-nilpotence and solvability of finite groups.J. Algebra 321 (2009), 1555-1560. Zbl 1169.20012, MR 2494409, 10.1016/j.jalgebra.2008.12.004
.

Files

Files Size Format View
CzechMathJ_70-2020-3_13.pdf 315.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo