Previous |  Up |  Next

Article

Title: Existence and simulation of Gibbs-Delaunay-Laguerre tessellations (English)
Author: Jahn, Daniel
Author: Seitl, Filip
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 4
Year: 2020
Pages: 617-645
Summary lang: English
.
Category: math
.
Summary: Three-dimensional Laguerre tessellation models became quite popular in many areas of physics and biology. They are generated by locally finite configurations of marked points. Randomness is included by assuming that the set of generators is formed by a marked point process. The present paper focuses on 3D marked Gibbs point processes of generators which enable us to specify the desired geometry of the Laguerre tessellation. In order to prove the existence of a stationary Gibbs measure using a general approach of Dereudre, Drouilhet and Georgii [3], the geometry of Laguerre tessellations and their duals Laguerre Delaunay tetrahedrizations is examined in detail. Since it is difficult to treat the models analytically, their simulations are carried out by Markov chain Monte Carlo techniques. (English)
Keyword: Laguerre–Delauay tetrahedrization
Keyword: stationary Gibbs measure
Keyword: Gibbs–Laguerre tessellation
Keyword: MCMC simulation
MSC: 60G55
MSC: 60K35
idZBL: Zbl 07286039
idMR: MR4168528
DOI: 10.14736/kyb-2020-4-0617
.
Date available: 2020-10-30T16:20:45Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148376
.
Reference: [1] Chiu, S. N., Stoyan, D., Kendall, W. S., Mecke, J.: Stochastic Geometry and its Applications..J. Willey and Sons, Chichester 2013. MR 3236788, 10.1002/9781118658222
Reference: [2] Dereudre, D.: Introduction to the theory of Gibbs point processes..In: Chapter in Stochastic Geometry, pp. 181-229, Springer, Cham 2019. MR 3931586, 10.1007/978-3-030-13547-8_5
Reference: [3] Dereudre, D., Drouilhet, R., Georgii, H. O.: Existence of Gibbsian point processes with geometry-dependent interactions..Probab. Theory Rel. 153 (2012), 3, 643-670. MR 2948688, 10.1007/s00440-011-0356-5
Reference: [4] Dereudre, D., Lavancier, F.: Practical simulation and estimation for Gibbs Delaunay-Voronoi tessellations with geometric hardcore interaction..Comput. Stat. Data An. 55 (2011), 1, 498-519. MR 2736572, 10.1016/j.csda.2010.05.018
Reference: [5] Fropuff: The vertex configuration of a tetrahedral-octahedral honeycomb..
Reference: [6] Hadamard, P.: Résolution d'une question relative aux déterminants..Bull. Sci. Math. 17 (1893), 3, 240-246.
Reference: [7] Lautensack, C., Zuyev, S.: Random Laguerre tessellations..Adv. Appl. Probab. 40 (2008), 3, 630-650. MR 2454026, 10.1017/s000186780000272x
Reference: [8] Møller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes..Chapman and Hall/CRC, Boca Raton 2003. MR 2004226, 10.1201/9780203496930
Reference: [9] Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams..J. Willey and Sons, Chichester 2009. MR 1770006, 10.2307/2687299
Reference: [10] Preston, C.: Random Fields..Springer, Berlin 1976. MR 0448630, 10.1007/bfb0080563
Reference: [11] Quey, R., Renversade, L.: Optimal polyhedral description of 3{D} polycrystals: Method and application to statistical and synchrotron {X}-ray diffraction data..Comput. Method Appl. M 330 (2018), 308-333. MR 3759098, 10.1016/j.cma.2017.10.029
Reference: [12] Rycroft, C.: Voro++: A three-dimensional Voronoi cell library in C++..Chaos 19 (2009), 041111. 10.1063/1.3215722
Reference: [13] Seitl, F., Petrich, L., Staněk, J., III, C. E. Krill, Schmidt, V., Beneš, V.: Exploration of Gibbs-Laguerre Tessellations for Three-Dimensional Stochastic Modeling..Methodol. Comput. Appl. Probab. (2020). 10.1007/s11009-019-09757-x
Reference: [14] Sommerville, D. M. Y.: An Introduction to the Geometry of N Dimensions..Methuen and Co, London 1929. MR 0100239
Reference: [15] Stein, P.: A note on the volume of a simplex..Amer. Math. Monthly 73 (1966), 3, 299-301. MR 1533698, 10.2307/2315353
Reference: [16] Zessin, H.: Point processes in general position..J. Contemp. Math. Anal. 43 (2008), 1, 59-65. MR 2465001, 10.3103/s11957-008-1005-x
.

Files

Files Size Format View
Kybernetika_56-2020-4_2.pdf 5.320Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo