Previous |  Up |  Next

Article

Title: The range of non-linear natural polynomials cannot be context-free (English)
Author: Pálvölgyi, Dömötör
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 4
Year: 2020
Pages: 722-726
Summary lang: English
.
Category: math
.
Summary: Suppose that some polynomial $f$ with rational coefficients takes only natural values at natural numbers, i. e., $L=\{f(n)\mid n\in {\mathbb N}\}\subseteq {\mathbb N}$. We show that the base-$q$ representation of $L$ is a context-free language if and only if $f$ is linear, answering a question of Shallit. The proof is based on a new criterion for context-freeness, which is a combination of the Interchange lemma and a generalization of the Pumping lemma. (English)
Keyword: contex-free languages
Keyword: pumping lemma
MSC: 68Q45
idZBL: Zbl 07286043
idMR: MR4168532
DOI: 10.14736/kyb-2020-4-0722
.
Date available: 2020-10-30T16:26:45Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148380
.
Reference: [1] Bar-Hillel, Y., Perles, M. A., Shamir, E.: On formal properties of simple phrase-structure grammars..Zeitschrift für Phonetik, Sprachwissenschaft, und Kommunikationsforschung 14 (1961), 2, 143-172. MR 0151376, 10.1524/stuf.1961.14.14.143
Reference: [2] Dömösi, P., Kudlek, M.: Strong iteration lemmata for regular, linear, context-free, and linear indexed languages..In: Fund. Comput. Theory 1999, pp. 226-233. MR 1850234, 10.1007/3-540-48321-7_18
Reference: [3] Ogden, W., Ross, R. J., Winklmann, K.: An “Interchange Lemma” for context-free languages..SIAM J. Comput. 14 (1982), 2, 410-415. MR 0784746, 10.1137/0214031
Reference: [4] Shallit, J.: A Second Course in Formal Languages and Automata Theory..Cambridge University Press, New York 2008. 10.1017/cbo9780511808876
.

Files

Files Size Format View
Kybernetika_56-2020-4_6.pdf 421.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo