Previous |  Up |  Next

Article

Keywords:
output regulation; global stability; internal model; nonlinear systems
Summary:
An adaptive output regulation design method is proposed for a class of output feedback systems with nonlinear exosystem and unknown parameters. A new nonlinear internal model approach is developed in the present study that successfully converts the global robust output regulation problem into a robust adaptive stabilization problem for the augmented system. Moreover, an output feedback controller is achieved based on a type of state filter which is designed for the transformed augmented system. The adaptive control technique is successfully introduced to the stabilization design to ensure the global stability of the closed-loop system. The result can successfully apply to a tracking control problem associated with the well known Van der Pol oscillator.
References:
[1] Bodson, M., Douglas, S. C.: Adaptive algorithms for the rejection of sinusoidal disturbances with unknown frequencies. Automatica 33 (1997), 2213-2221. DOI 10.1016/s0005-1098(97)00149-0 | MR 1604113
[2] Byrnes, C. I., Isidori, A.: Nonlinear internal model for output regulation. IEEE Trans. Automat. Control 49 (2004), 2244-2247. DOI 10.1109/tac.2004.838492 | MR 2106753
[3] Chen, C., Ding, Z., Lennox, B.: Rejection of nonharmonic disturbances innonlinear systems with semi-global stability. IEEE Trans. Circuits Systems, II: Express Briefs 55 (2008), 1289-1293. DOI 10.1109/tcsii.2008.2009962
[4] Chen, Z., Huang, J.: Robust output regulation with nonlinear exosystems. Automatica 41 (2005), 1447-1454. DOI 10.1016/j.automatica.2005.03.015 | MR 2160490 | Zbl 1086.93013
[5] Ding, Z.: Semi-global stabilization of a class of non-minimum phase nonlinear output feedback systems. IEE Proc. Control Theory Appl. 152 (2005), 4, 460-464. DOI 10.1049/ip-cta:20041246
[6] Ding, Z.: Output regulation of uncertain nonlinear systems with nonlinear exosystems. IEEE Trans. Automat. Control 51 (2006), 498-503. DOI 10.1109/tac.2005.864199 | MR 2205690
[7] Ding, Z.: Asymptotic rejection of unknown sinusoidal disturbances in nonlinear systems. Automatica 43 (2007), 174-177. DOI 10.1016/j.automatica.2006.08.006 | MR 2266785
[8] Ding, Z.: Decentralized output regulation of large scale nonlinear systems with delay. Kybernetika 45 (2009), 33-48. MR 2489579 | Zbl 1158.93303
[9] Huang, X., Khalil, H. K., Song, Y.: Regulation of non-minimum-phase nonlinear systems using slow integrators and high-gain feedback. IEEE Trans. Automat. Control 64 (2019), 2, 640-653. DOI 10.1109/tac.2018.2839532 | MR 3912114
[10] Huang, J., Rugh, W. J.: On a nonlinear multivariable servomenchanism problem. Automatica 26 (1990), 963-972. DOI 10.1016/0005-1098(90)90081-r | MR 1080983
[11] Isidori, A.: Global almost disturbance decoupling with stability for non-minimum phase single-input single-output nonlinear systems. Systems Control Lett. 28 (1996), 2, 115-122. DOI 10.1016/0167-6911(96)00021-7 | MR 1404254
[12] Isidori, A.: A tool for semiglobal stabilization of uncertain non-minimum phase nonlinear systems via output feedback. IEEE Trans. Automat. Control 45 (2000), 10, 1817-1827. DOI 10.1109/tac.2000.880972 | MR 1795350
[13] Isidori, A.: Nonlinear Control Systems. Springer-Verlag, Berlin 2013. DOI 10.1007/978-3-662-02581-9 | MR 0895138 | Zbl 0931.93005
[14] Isidori, A., Byrnes, C. I.: Output regulation of nonlinear systems. IEEE Trans. Automat. Control 35 (1990), 131-140. DOI 10.1109/9.45168 | MR 1038409 | Zbl 0989.93041
[15] Isidori, A., Marconi, L., Serrani, A.: New results on semiglobal output regulation of non-minimum phase nonlinear systems. In: Proc. 41st IEEE Conference on Decision and Control, Las Vegas 2002, pp. 1467-1472. DOI 10.1109/cdc.2002.1184726 | MR 1760699
[16] Isidori, A., Marconi, L., Serrani, A.: Observability conditions for the semiglobal output regulation of non-minimum phase nonlinear systems. In: Proc. 42nd IEEE Conference on Decision and Control, Maui 2003, pp. 55-60. DOI 10.1109/cdc.2003.1272535 | MR 2106753
[17] Jiang, Y.: Rejection of nonharmonic disturbances in the nonlinear system via the internal model approach. J. Vibration Control 13 (2011), 6, 1916-1921. DOI 10.1177/1077546311429051 | MR 3179079
[18] Jiang, Y., Dai, J. Y.: Adaptive output regulation of a class of nonlinear output feedback systems with unknown high frequency gain. IEEE/CAA J. Autom. Sinica 7 (2020), 2, 568-574. DOI 10.1109/jas.2020.1003060 | MR 4086660
[19] Jiang, Y., Liu, S.: Rejection of nonharmonic disturbances in a class of nonlinear systems with nonlinear exosystems. Asian J. Control 18(2011), 12, 858-867. DOI 10.1002/asjc.193 | MR 2869889
[20] Jiang, Y., Liu, S. T., Wang, R. L.: Rejection of nonharmonic disturbances for a class of uncertain nonlinear systems with nonlinear exosystems. Science China (Inform. Sci.) 56(2013), 3, 1-12. DOI 10.1007/s11432-011-4481-7 | MR 3028023
[21] Karagiannisa, D., Jiang, Z., Ortegac, R., al, et: Output-feedback stabilization of a class of uncertain non-minimum phase nonlinear systems. Automatica 41 (2005), 9, 1609-1615. DOI 10.1016/j.automatica.2005.04.013 | MR 2161124
[22] Marco, S. D., Marconi, L., Mahony, R., Hamel, T.: Output regulation for systems on matrix lie-groups. Automatica 87 (2018), 8-16. DOI 10.1016/j.automatica.2017.08.006 | MR 3733895
[23] Marino, R., Tomei, P.: Global adaptive output feedback control of nonlinear systems, part i: Linear parameterization. IEEE Trans. Automat. Control 38 (1993), 17-32. DOI 10.1109/9.186309 | MR 1201492
[24] Nazrulla, S., Khalil, H. K.: Output regulation of non-minimum phase nonlinear systems using an extended high-gain observer. In: IEEE International Conference on Control Automation, IEEE, 2010. DOI 10.1109/icca.2009.5410197 | MR 2814930
[25] Nazrulla, S., Khalil, H. K.: Robust stabilization of non-minimum phase nonlinear systems using extended high-gain observers. IEEE Trans. Automat. Control 56 (2011), 4, 802-813. DOI 10.1109/tac.2010.2069612 | MR 2814930
[26] Ramos, L. E., Čelikovský, S., Kučera, V.: Generalized output regulation problem for a class of nonlinear systems with nonautonomous exosystem. IEEE Trans. Automat. Control 49 (2004), 1737-1742. DOI 10.1109/tac.2004.835404 | MR 2091325
[27] Rehák, B., Čelikovský, S., Ruiz-León, J., Orozco-Mora, J.: A comparison of two fem-based methods for the solution of the nonlinear output regulation problem. Kybernetika 45 (2009), 427-444. MR 2543132
[28] Tornambe, A.: Output feedback stabilization of a class of non-minimum phase nonlinear systems. Systems Control Lett. 19(1992), 3, 193-204. DOI 10.1016/0167-6911(92)90113-7 | MR 1180507
[29] Trinh, N. T., Andrieu, V., Xu, C. Z.: Output regulation for a cascaded network of 2$\times$2 hyperbolic systems with PI controller. Automatica 91 (2018), 270-278. DOI 10.1016/j.automatica.2018.01.010 | MR 3777612
[30] Wang, L., Isidori, A., Liu, Z. T., Su, H. Y.: Robust output regulation for invertible nonlinear MIMO systems. Automatica 82 (2017), 278-286. DOI 10.1016/j.automatica.2017.04.049 | MR 3658766
[31] Xi, Z., Ding, Z.: Global adaptive output regulation of a class of nonlinear systems with nonlinear exosystems. Automatica 43 (2007), 143-149. DOI 10.1016/j.automatica.2006.08.011 | MR 2266780
[32] Xu, D., Wang, X., Chen, Z.: Output regulation of nonlinear output feedback systems with exponential parameter convergence. Systems Control Lett. 88 (2016), 81-90. DOI 10.1016/j.sysconle.2015.12.004 | MR 3453455
[33] Zattoni, E., Perdon., A. M., Conte, G.: Output regulation by error dynamic feedback in hybrid systems with periodic state jumps. Automatica 50 (2017), 1, 322-334. DOI 10.1016/j.automatica.2017.03.037 | MR 3654616
Partner of
EuDML logo