Previous |  Up |  Next

Article

Title: Tridiagonal matrices and spectral properties of some graph classes (English)
Author: Andelić, Milica
Author: Du, Zhibin
Author: da Fonseca, Carlos M.
Author: Simić, Slobodan K.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 4
Year: 2020
Pages: 1125-1138
Summary lang: English
.
Category: math
.
Summary: A graph is called a chain graph if it is bipartite and the neighbourhoods of the vertices in each colour class form a chain with respect to inclusion. In this paper we give an explicit formula for the characteristic polynomial of any chain graph and we show that it can be expressed using the determinant of a particular tridiagonal matrix. Then this fact is applied to show that in a certain interval a chain graph does not have any nonzero eigenvalue. A similar result is provided for threshold graphs. (English)
Keyword: tridiagonal matrix
Keyword: threshold graph
Keyword: chain graph
Keyword: eigenvalue-free interval
MSC: 05C50
idZBL: 07285984
idMR: MR4181801
DOI: 10.21136/CMJ.2020.0182-19
.
Date available: 2020-11-18T09:48:34Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148416
.
Reference: [1] Aguilar, C. O., Lee, J.-Y., Piato, E., Schweitzer, B. J.: Spectral characterizations of anti-regular graphs.Linear Algebra Appl. 557 (2018), 84-104. Zbl 1396.05064, MR 3848263, 10.1016/j.laa.2018.07.028
Reference: [2] Alazemi, A., elić, M. Anđ, Simić, S. K.: Eigenvalue location for chain graphs.Linear Algebra Appl. 505 (2016), 194-210. Zbl 1338.05155, MR 3506491, 10.1016/j.laa.2016.04.030
Reference: [3] elić, M. Anđ, Andrade, E., Cardoso, D. M., Fonseca, C. M. da, Simić, S. K., Tošić, D. V.: Some new considerations about double nested graphs.Linear Algebra Appl. 483 (2015), 323-341. Zbl 1319.05084, MR 3378905, 10.1016/j.laa.2015.06.010
Reference: [4] elić, M. Anđ, Fonseca, C. M. da: Sufficient conditions for positive definiteness of tridiagonal matrices revisited.Positivity 15 (2011), 155-159 \99999DOI99999 10.1007/s11117-010-0047-y \goodbreak. Zbl 1216.15022, MR 2782752, 10.1007/s11117-010-0047-y
Reference: [5] elić, M. Anđ, Ghorbani, E., Simić, S. K.: Vertex types in threshold and chain graphs.Discrete Appl. Math. 269 (2019), 159-168. Zbl 1421.05062, MR 4016594, 10.1016/j.dam.2019.02.040
Reference: [6] elić, M. Anđ, Simić, S. K., Živković, D., Dolićanin, E. Ć.: Fast algorithms for computing the characteristic polynomial of threshold and chain graphs.Appl. Math. Comput. 332 (2018), 329-337. Zbl 1427.05127, MR 3788693, 10.1016/j.amc.2018.03.024
Reference: [7] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra.London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010). Zbl 1211.05002, MR 2571608, 10.1017/CBO9780511801518
Reference: [8] Fonseca, C. M. da: On the eigenvalues of some tridiagonal matrices.J. Comput. Appl. Math. 200 (2007), 283-286. Zbl 1119.15012, MR 2276832, 10.1016/j.cam.2005.08.047
Reference: [9] Ghorbani, E.: Eigenvalue-free interval for threshold graphs.Linear Algebra Appl. 583 (2019), 300-305. Zbl 1426.05096, MR 4002158, 10.1016/j.laa.2019.08.028
Reference: [10] Jacobs, D. P., Trevisan, V., Tura, F.: Eigenvalues and energy in threshold graphs.Linear Algebra Appl. 465 (2015), 412-425. Zbl 1302.05103, MR 3274686, 10.1016/j.laa.2014.09.043
Reference: [11] Lazzarin, J., Márquez, O. F., Tura, F. C.: No threshold graphs are cospectral.Linear Algebra Appl. 560 (2019), 133-145. Zbl 1401.05152, MR 3866549, 10.1016/j.laa.2018.09.033
Reference: [12] Maybee, J. S., Olesky, D. D., Driessche, P. van den, Wiener, G.: Matrices, digraphs, and determinants.SIAM J. Matrix Anal. Appl. 10 (1989), 500-519. Zbl 0701.05038, MR 1016799, 10.1137/0610036
.

Files

Files Size Format View
CzechMathJ_70-2020-4_16.pdf 316.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo