Previous |  Up |  Next

Article

Title: Exponent of class group of certain imaginary quadratic fields (English)
Author: Chakraborty, Kalyan
Author: Hoque, Azizul
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 4
Year: 2020
Pages: 1167-1178
Summary lang: English
.
Category: math
.
Summary: Let $n>1$ be an odd integer. We prove that there are infinitely many imaginary quadratic fields of the form $\mathbb {Q} \bigl (\sqrt {x^2-2y^n} \bigr )$ whose ideal class group has an element of order $n$. This family gives a counterexample to a conjecture by H. Wada (1970) on the structure of ideal class groups. (English)
Keyword: quadratic field
Keyword: discriminant
Keyword: class group
Keyword: Wada's conjecture
MSC: 11R11
MSC: 11R29
idZBL: 07285988
idMR: MR4181805
DOI: 10.21136/CMJ.2020.0289-19
.
Date available: 2020-11-18T09:50:26Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148420
.
Reference: [1] Ankeny, N. C., Chowla, S.: On the divisibility of the class number of quadratic fields.Pac. J. Math. 5 (1955), 321-324. Zbl 0065.02402, MR 0085301, 10.2140/pjm.1955.5.321
Reference: [2] Chakraborty, K., Hoque, A.: Class groups of imaginary quadratic fields of 3-rank at least 2.Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 47 (2018), 179-183. Zbl 1424.11157, MR 3849201
Reference: [3] Chakraborty, K., Hoque, A., Kishi, Y., Pandey, P. P.: Divisibility of the class numbers of imaginary quadratic fields.J. Number Theory 185 (2018), 339-348. Zbl 06820888, MR 3734353, 10.1016/j.jnt.2017.09.007
Reference: [4] Chakraborty, K., Hoque, A., Sharma, R.: Divisibility of class numbers of quadratic fields: Qualitative aspects.Advances in Mathematical Inequalities and Applications Trends in Mathematics. Birkhäuser, Singapore (2018), 247-264. Zbl 1418.11144, MR 3969663, 10.1007/978-981-13-3013-1_12
Reference: [5] Cohn, J. H. E.: On the class number of certain imaginary quadratic fields.Proc. Am. Math. Soc. 130 (2002), 1275-1277. Zbl 1113.11063, MR 1879947, 10.1090/S0002-9939-01-06255-4
Reference: [6] Gross, B. H., Rohrlich, D. E.: Some results on the Mordell-Weil group of the Jacobian of the Fermat curve.Invent. Math. 44 (1978), 201-224. Zbl 0369.14011, MR 491708, 10.1007/BF01403161
Reference: [7] Hoque, A., Chakraborty, K.: Divisibility of class numbers of certain families of quadratic fields.J. Ramanujan Math. Soc. 34 (2019), 281-289. MR 4010381
Reference: [8] Hoque, A., Saikia, H. K.: On the divisibility of class numbers of quadratic fields and the solvability of Diophantine equations.SeMA J. 73 (2016), 213-217. Zbl 1348.11087, MR 3542827, 10.1007/s40324-016-0065-1
Reference: [9] Ishii, K.: On the divisibility of the class number of imaginary quadratic fields.Proc. Japan Acad., Ser. A 87 (2011), 142-143. Zbl 1262.11093, MR 2843095, 10.3792/pjaa.87.142
Reference: [10] Ito, A.: A note on the divisibility of class numbers of imaginary quadratic fields $\mathbb{Q}(\sqrt{a^2-k^n})$.Proc. Japan Acad., Ser. A 87 (2011), 151-155. Zbl 1247.11139, MR 2863357, 10.3792/pjaa.87.151
Reference: [11] Ito, A.: Remarks on the divisibility of the class numbers of imaginary quadratic fields $\mathbb{Q}(\sqrt{2^{2k}-q^n})$.Glasg. Math. J. 53 (2011), 379-389. Zbl 1259.11102, MR 2783167, 10.1017/S0017089511000012
Reference: [12] Ito, A.: Notes on the divisibility of the class numbers of imaginary quadratic fields $\mathbb{Q}(\sqrt{3^{2e}-4k^n})$.Abh. Math. Semin. Univ. Hamb. 85 (2015), 1-21. Zbl 1400.11145, MR 3334456, 10.1007/s12188-015-0106-1
Reference: [13] Kishi, Y.: Note on the divisibility of the class number of certain imaginary quadratic fields.Glasg. Math. J. 51 (2009), 187-191 corrigendum ibid. 52 2010 207-208. Zbl 1211.11124, MR 2471686, 10.1017/S001708950800462X
Reference: [14] Louboutin, S. R.: On the divisibility of the class number of imaginary quadratic number fields.Proc. Am. Math. Soc. 137 (2009), 4025-4028. Zbl 1269.11111, MR 2538563, 10.1090/S0002-9939-09-10021-7
Reference: [15] Murty, M. R.: The $abc$ conjecture and exponents of class groups of quadratic fields.Number Theory. Proceedings of the International Conference on Discrete Mathematics and Number Theory Contemporary Mathematics 210. American Mathematical Society, Providence (1998), 85-95. Zbl 0893.11043, MR 1478486, 10.1090/conm/210
Reference: [16] Murty, M. R.: Exponents of class groups of quadratic fields.Topics in Number Theory Mathematics and Its Applications 467. Kluwer Academic Publishers, Dordrecht (1999), 229-239. Zbl 0993.11059, MR 1691322, 10.1007/978-1-4613-0305-3_15
Reference: [17] Nagell, T.: Über die Klassenzahl imaginär-quadratischer Zählkörper.Abh. Math. Semin. Univ. Hamb. 1 (1922), 140-150 German \99999JFM99999 48.0170.03. MR 3069394, 10.1007/BF02940586
Reference: [18] Soundararajan, K.: Divisibility of class numbers of imaginary quadratic fields.J. Lond. Math. Soc., II. Ser. 61 (2000), 681-690. Zbl 1018.11054, MR 1766097, 10.1112/S0024610700008887
Reference: [19] Group, The PARI: PARI/GP, version 2.9.0.University Bordeaux (2016), Available at http://pari.math.u-bordeaux.fr.
Reference: [20] Wada, H.: A table of ideal class groups of imaginary quadratic fields.Proc. Japan Acad. 46 (1970), 401-403. Zbl 0209.35604, MR 0366866, 10.3792/pja/1195520300
Reference: [21] Zhu, M., Wang, T.: The divisibility of the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{2^{2m}-k^n})$.Glasg. Math. J. 54 (2012), 149-154. Zbl 1269.11107, MR 2862392, 10.1017/S0017089511000486
.

Files

Files Size Format View
CzechMathJ_70-2020-4_20.pdf 291.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo