[2] Axelsson, O., Barker, V. A.: 
Finite element solution of boundary value problems, theory and computations.  Academic Press, Orlando, FL, 1984. 
MR 0758437[5] Brandts, J., Křížek, M.: Padesát let metody konjugovaných gradienů aneb zvládnou počítače soustavy miliónů rovnic o miliónech neznámých?.  Pokroky Mat. Fyz. Astronom. 47 (2002), 103–113.
[6] Brezinski, C.: 
History of continued fractions and Padé approximants.  Springer Series in Computational Mathematics, vol. 12. Springer-Verlag, Berlin, 1991. 
MR 1083352[7] Carson, E., Rozložník, M., Strakoš, Z., Tichý, P., Tůma, M.: 
The numerical stability analysis of pipelined conjugate gradient methods: historical context and methodology.  SIAM J. Sci. Comput. 40 (2018), A3549–A3580. 
DOI 10.1137/16M1103361 | 
MR 3866570[8] Carson, E., Strakoš, Z.: 
On the cost of iterative computations.  Philos. Trans. Roy. Soc. A 378 (2020). 
MR 4072455[9] Concus, P., Golub, G. H., O'Leary, D. P.: 
A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations.  In: Bunch, J. R., Rose, D. J.: Sparse Matrix Computations, Academic Press, New York, 2018, 309–332. 
MR 0501821[11] Duintjer Tebbens, J., Hnětynková, I., Plešinger, M., Strakoš, Z., Tichý, P.: Analýza metod pro maticové výpočty – základní metody.  MatfyzPress, Praha, 2012.
[12] Engeli, M., Ginsburg, T., Rutishauser, H., Stiefel, E.: 
Refined iterative methods for computation of the solution and the eigenvalues of self-adjoint boundary value problems.  Mitt. Inst. Angew. Math. Zürich 8, Birkhäuser, Basel, 1959. 
MR 0145689[13] Fischer, B.: 
Polynomial based iteration methods for symmetric linear systems.  Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley and Sons, Chichester, 1996. 
MR 1449136[14] Gergelits, T., Mardal, K.-A., Nielsen, B. F., Strakoš, Z.: 
Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of the discretized operator.  SIAM J. Numer. Anal. 57 (2019), 1369–1394. 
DOI 10.1137/18M1212458 | 
MR 3961990[15] Gergelits, T., Nielsen, B. F., Strakoš, Z.: 
Generalized spectrum of second order differential operators.  SIAM J. Numer. Anal. 58 (2020), 2193–2211. 
DOI 10.1137/20M1316159 | 
MR 4128499[16] Gergelits, T., Strakoš, Z.: 
Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations.  Numer. Algorithms 65 (2014), 759–782. 
DOI 10.1007/s11075-013-9713-z | 
MR 3187962[18] Greenbaum, A.: 
Iterative methods for solving linear systems.  Frontiers in Applied Mathematics, vol. 17. SIAM, Philadelphia, PA, 1997. 
MR 1474725[20] Greenbaum, A., Strakoš, Z.: 
Predicting the behavior of finite precision Lanczos and conjugate gradient computations.  SIAM J. Matrix Anal. Appl. 13 (1992), 121–137. 
DOI 10.1137/0613011 | 
MR 1146656[21] Greenbaum, A., Strakoš, Z.: 
Matrices that generate the same Krylov residual spaces.  In: Recent advances in iterative methods. IMA Vol. Math. Appl., vol. 60. Springer, New York, 1994, 95–118. 
MR 1332745[22] Hayes, R. M.: Iterative methods for solving linear problems in Hilbert space.  PhD. Thesis. Univ. of California at Los Angeles, 1954.
[25] Lanczos, C.: 
An iteration method for the solution of the eigenvalue problem of linear differential and integral operators.  J. Research Nat. Bur. Standards 45 (1950), 255–282. 
DOI 10.6028/jres.045.026 | 
MR 0042791[26] Lanczos, C.: 
Solution of systems of linear equations by minimized iterations.  J. Research Nat. Bur. Standards 49 (1952), 33–53. 
DOI 10.6028/jres.049.006 | 
MR 0051583[27] Lanczos, C.: 
Chebyshev polynomials in the solution of large-scale linear systems.  In: Proceedings of the Association for Computing Machinery, Toronto, 1952, Sauls Lithograph Co., Washington, DC, 1953, 124–133. 
MR 0067580[28] Lanczos, C.: Why Mathematics?.  Lecture given at the Annual Meeting of the Irish Mathematical Association on October 31, 1966, at Belfield, Dublin.
[29] Liesen, J., Strakoš, Z.: 
Krylov subspace methods: Principles and analysis.  Oxford University Press, Oxford, 2013. 
MR 3024841[30] Ljusternik, L. A.: 
Solution of problems in linear algebra by the method of continued fractions.  Trudy Voronezh. Gos. Inst., Voronezh 2 (1956), 85–90. 
MR 0084856[31] Málek, J., Strakoš, Z.: 
Preconditioning and the conjugate gradient method in the context of solving PDEs.  SIAM Spotlights, vol. 1. SIAM, Philadelphia, PA, 2015. 
MR 3307335[35] Pearson, J. W., Pestana, J.: Preconditioned iterative methods for scientific applications.  GAMM-Mitt., to appear (2020).
[37] Reid, J. K.: 
On the method of conjugate gradients for the solution of large sparse systems of linear equations.  In: Large sparse sets of linear equations, Proc. Conf., St. Catherine’s Coll., Oxford, 1970, Academic Press, London, 1971, 231–254. 
MR 0341836[38] Rektorys, K.: 
Variační metody v inženýrských problémech a v problémech matematické fyziky.  SNTL, Praha, 1974. 
MR 0487652[39] Saad, Y.: 
Iterative methods for sparse linear systems.  2nd ed., SIAM, Philadelphia, PA, 2003. 
MR 1990645[40] Stieltjes, T. J.: 
Recherches sur les fractions continues.  Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 8 (1894), J. 1–122. Reprinted in Oeuvres II (P. Noordhoff, Groningen, 1918), 402–566. English translation Investigations on continued fractions. in Thomas Jan Stieltjes, Collected Papers, Vol. II, Springer-Verlag, Berlin, 1993, 609–745. 
MR 1508159[41] Strakoš, Z., Tichý, P.: 
On error estimation in the conjugate gradient method and why it works in finite precision computations.  Electron. Trans. Numer. Anal. 13 (2002), 56–80. 
MR 1943611[43] Vorobyev, Yu. V.: 
Methods of moments in applied mathematics.  Translated from the Russian original published in 1958 by Bernard Seckler, Gordon and Breach Science Publishers, New York, 1965. 
MR 0184400[44] van der Vorst, H. A.: Preconditioning by incomplete decompositions.  PhD Thesis. University of Utrecht, 1982.
[46] Zeidler, E.: 
Oxford users' guide to mathematics.  Oxford University Press, Oxford, 2004. Translated from the 1996 German original by Bruce Hunt. 
MR 3157455