Title:
|
A note on representing dowling geometries by partitions (English) |
Author:
|
Matúš, František |
Author:
|
Ben-Efraim, Aner |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
56 |
Issue:
|
5 |
Year:
|
2020 |
Pages:
|
934-947 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove that a rank $\geq 3$ Dowling geometry of a group $H$ is partition representable if and only if $H$ is a Frobenius complement. This implies that Dowling group geometries are secret-sharing if and only if they are multilinearly representable. (English) |
Keyword:
|
matroid representations |
Keyword:
|
partition representations |
Keyword:
|
Dowling geometries |
Keyword:
|
Frobenius groups |
MSC:
|
05B35 |
idMR:
|
MR4187781 |
DOI:
|
10.14736/kyb-2020-5-0934 |
. |
Date available:
|
2020-12-16T16:02:19Z |
Last updated:
|
2021-02-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148492 |
. |
Reference:
|
[1] Beimel, A., Ben-Efraim, A., Padró, C., Tyomkin, I.: Multi-linear secret-sharing schemes..Theory Cryptogr. Conf. 14 (2014), 394-418. MR 3183548, 10.1007/978-3-642-54242-8_17 |
Reference:
|
[2] Ben-Efraim, A.: Secret-sharing matroids need not be Algebraic..Discrete Math. 339 (2015), 8, 2136-2145. MR 3500143, 10.1016/j.disc.2016.02.012 |
Reference:
|
[3] Brickell, E. F., Davenport, D. M.: On the classification of ideal secret sharing schemes.. |
Reference:
|
[4] Brown, R.: Frobenius groups and classical maximal orders..Memoirs Amer. Math. Soc. 151 (2001), 717. MR 1828640, 10.1090/memo/0717 |
Reference:
|
[5] Dowling, T. A.: A class of geometric lattices based on finite groups..J. Combinat. Theory, Ser. B 14 (1973), 61-86. MR 0307951, 10.1016/s0095-8956(73)80007-3 |
Reference:
|
[6] Evans, D. M., Hrushovski, E.: Projective planes in algebraically closed fields..Proc. London Math. Soc. 62 (1989), 3, 1-24. MR 1078211, 10.1112/plms/s3-62.1.1 |
Reference:
|
[7] Feit, W.: Characters of Finite Groups..W. A. Benjamin Company, Inc., New York 1967. MR 0219636 |
Reference:
|
[8] Matúš, F.: Matroid representations by partitions..Discrete Math. 203 (1999), 169-194. MR 1696241, 10.1016/s0012-365x(99)00004-7 |
Reference:
|
[9] Jacobson, N.: Basic Algebra II. (Second Edition).W. H. Freeman and Co., New York 1989. MR 1009787 |
Reference:
|
[10] Oxley, J. G.: Matroid Theory. (Second Edition).Oxford University Press Inc., New York 2011. MR 2849819, 10.1093/acprof:oso/9780198566946.001.0001 |
Reference:
|
[11] Passman, D. S.: Permutation Groups..Dover Publications, Inc. Mineola, New York 2012. MR 2963408 |
Reference:
|
[12] Pendavingh, R. A., Zwam, S. H. M. van: Skew partial fields, multilinear representations of matroids, and a matrix tree theorem..Adv. Appl. Math. 50 (2013), 1, 201-227. MR 2996392, 10.1016/j.aam.2011.08.003 |
Reference:
|
[13] Seymour, P. D.: On secret-sharing matroids..J. Combinat. Theory, Ser. B 56 (1992), 69-73. MR 1182458, 10.1016/0095-8956(92)90007-k |
Reference:
|
[14] Simonis, J., Ashikhmin, A.: Almost affine codes..Designs Codes Cryptogr. 14 (1998), 2, 179-197. MR 1614357, 10.1023/a:1008244215660 |
Reference:
|
[15] Suzuki, M.: Group Theory I..Springer-Verlag, Berlin 1982. MR 0648772 |
Reference:
|
[16] Vertigan, D.: Dowling Geometries representable over rings..Ann. Combinat. 19 (2015), 225-233. MR 3319870, 10.1007/s00026-015-0250-4 |
. |