Previous |  Up |  Next

Article

Title: Harmonic analysis of symmetric random graphs (English)
Author: Lauritzen, Steffen
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 6
Year: 2020
Pages: 1081-1089
Summary lang: English
.
Category: math
.
Summary: This note attempts to understand graph limits as defined by Lovasz and Szegedy in terms of harmonic analysis on semigroups. This is done by representing probability distributions of random exchangeable graphs as mixtures of characters on the semigroup of unlabeled graphs with node-disjoint union, thereby providing an alternative derivation of de Finetti's theorem for random exchangeable graphs. (English)
Keyword: characters
Keyword: deFinetti's theorem
Keyword: exchangeability
Keyword: extreme point models
Keyword: graph limits
Keyword: graphons
Keyword: positive definite functions
Keyword: semigroups
MSC: 43A35
MSC: 60B99
idMR: MR4199904
DOI: 10.14736/kyb-2020-6-1081
.
Date available: 2021-01-08T08:34:52Z
Last updated: 2021-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/148500
.
Reference: [1] Aldous, D.: Representations for partially exchangeable random variables..J. Multivar. Anal. 11 (1981), 581-598. MR 0637937, 10.1016/0047-259x(81)90099-3
Reference: [2] Aldous, D.: Exchangeability and related topics..In: École d'Été de Probabilités de Saint-Flour XIII - 1983 (P. Hennequin, ed.), Springer-Verlag, Heidelberg 1985, pp. 1-198. MR 0883646, 10.1007/bfb0099421
Reference: [3] Berg, C., Christensen, J. P. R., Ressel, P.: Positive definite functions on Abelian semigroups..Math. Ann. 259 (1976), 253-274. MR 0420150, 10.1007/bf01360957
Reference: [4] Berg, C., Christensen, J. P. R., Ressel, P.: Harmonic Analysis on Semigroups..Springer-Verlag, New York 1984. MR 0747302, 10.1007/978-1-4612-1128-0
Reference: [5] Borgs, C., Chayes, J., Lovász, L., Sós, V., Vesztergombi, K.: Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing..Adv. Math. 219 (2008), 1801-1851. MR 2455626, 10.1016/j.aim.2008.07.008
Reference: [6] Diaconis, P., Freedman, D.: Finite exchangeable sequences..Ann. Probab. 8 (1980), 745-764. MR 0577313, 10.1214/aop/1176994663
Reference: [7] Diaconis, P., Freedman, D.: On the statistics of vision: the Julesz conjecture..J. Math. Psychol. 24 (1981), 112-138. MR 0640207, 10.1016/0022-2496(81)90039-0
Reference: [8] Diaconis, P., Janson, S.: Graph limits and exchangeable random graphs..Rendiconti di Matematica, Serie VII 28 (2008), 33-61. MR 2463439
Reference: [9] Drton, M., Richardson, T. S.: Binary models for marginal independence..J. Roy. Statist. Soc. Series B 70 (2008), 287-309. MR 2424754, 10.1111/j.1467-9868.2007.00636.x
Reference: [10] Freedman, D.: A remark on the difference between sampling with and without replacement..J. Amer. Statist. Assoc. 72 (1977), 681. MR 0445667, 10.1080/01621459.1977.10480637
Reference: [11] Holland, P. W., Leinhardt, S.: An exponential family of probability distributions for directed graphs..J. Amer. Statist. Assoc. 76 (1981), 33-50. MR 0608176, 10.1080/01621459.1981.10477598
Reference: [12] Hoover, D. N.: Relations on probability spaces and arrays of random variables..Preprint, Institute of Advanced Study, Princeton 1979.
Reference: [13] Lauritzen, S., Rinaldo, A., Sadeghi, K.: Random networks, graphical models, and exchangeability..J. Roy. Statist. Soc., Series B, 80 (2018), 481-508. MR 3798875
Reference: [14] Lauritzen, S., Rinaldo, A., Sadeghi, K.: On exchangeability in network models..J. Algebr. Statist. 10 (2019), 85-114. MR 3947125, 10.18409/jas.v10i1.73
Reference: [15] Lauritzen, S. L.: General exponential models for discrete observations..Scand. J. Statist. 2 (1975), 23-33. MR 0378163
Reference: [16] Lauritzen, S. L.: Extremal Families and Systems of Sufficient Statistics..Springer-Verlag, Heidelberg 1988. MR 0971253, 10.1007/978-1-4612-1023-8
Reference: [17] Lauritzen, S. L.: Exchangeable Rasch matrices..Rendiconti di Matematica, Serie VII 28 (2008), 83-95. MR 2463441, 10.1007/bf02419265
Reference: [18] Lovász, L.: Large Networks and Graph Limits..Colloquium Publications, American Mathematical Society, Rhode Island 2012. MR 3012035, 10.1090/coll/060
Reference: [19] Lovász, L., Szegedy, B.: Limits of dense graph sequences..J. Combinat. Theory, Series B 96 (2006), 933-957. MR 2274085, 10.1016/j.jctb.2006.05.002
Reference: [20] Matúš, F.: Finite Partially Exchangeable Arrays..Technical Report 1856, Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague 1995.
Reference: [21] Orbantz, P., Roy, D. M.: Bayesian models of graphs, arrays, and other exchangeable structures..IEEE Trans. Pattern Anal. Machine Intel. 37 (2015), 437-461. 10.1109/tpami.2014.2334607
Reference: [22] Ressel, P.: de Finetti-type theorems: An analytical approach..Ann. Probab. 13 (1985), 898-922. MR 0799427, 10.1214/aop/1176992913
Reference: [23] Ressel, P.: Exchangeability and semigroups..Rendiconti di Matematica, Serie VII 28 (2008), 63-81. MR 2463440
Reference: [24] Silverman, B. W.: Limit theorems for dissociated random variables..Adv. Appl. Probab. 8 (1976), 806-819. MR 0431348, 10.1017/s0001867800042932
Reference: [25] Snijders, T. A. B., Pattison, P. E., Robins, G. L., Handcock, M. S.: New specifications for exponential random graph models..Sociolog. Methodology 36 (2006), 99-153. 10.1111/j.1467-9531.2006.00176.x
.

Files

Files Size Format View
Kybernetika_56-2020-6_5.pdf 438.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo