Previous |  Up |  Next

Article

Title: Bounds on the information divergence for hypergeometric distributions (English)
Author: Harremoës, Peter
Author: Matúš, František
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 6
Year: 2020
Pages: 1111-1132
Summary lang: English
.
Category: math
.
Summary: The hypergeometric distributions have many important applications, but they have not had sufficient attention in information theory. Hypergeometric distributions can be approximated by binomial distributions or Poisson distributions. In this paper we present upper and lower bounds on information divergence. These bounds are important for statistical testing and for a better understanding of the notion of exchangeability. (English)
Keyword: binomial distribution
Keyword: hypergeometric distribution
Keyword: information divergence
Keyword: inequalities
MSC: 62E17
MSC: 94A17
idMR: MR4199906
DOI: 10.14736/kyb-2020-6-1111
.
Date available: 2021-01-08T08:36:44Z
Last updated: 2021-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/148502
.
Reference: [1] Barbour, A. D., Holst, L., L., Janson, S.: Poisson Approximation..Oxford Studies in Probability 2, Clarendon Press, Oxford 1992. MR 1163825,
Reference: [2] Cover, T. M., Thomas, J. A.: Elements of Information Theory..Wiley Series in Telecommunications. 1991. MR 1122806,
Reference: [3] Csiszár, I., Shields, P.: Information Theory and Statistics: A Tutorial..Foundations and Trends in Communications and Information Theory, Now Publishers Inc., (2004) 4, 417-528. MR 0886841,
Reference: [4] Diaconis, P., Friedman, D.: A dozen de Finetti-style results in search of a theory.Ann. Inst. Henri Poincaré 23 (1987), 2, 397-423. MR 0898502
Reference: [5] Harremoës, P.: Mutual information of contingency tables and related inequalities..In: 2014 IEEE International Symposium on Information Theory, IEEE 2014, pp. 2474-2478.
Reference: [6] Harremoës, P., Johnson, O., Kontoyiannis, I.: Thinning and information projections..arXiv:1601.04255, 2016. MR 2807322
Reference: [7] Harremoës, P., Ruzankin, P.: Rate of Convergence to Poisson Law in Terms of Information Divergence..IEEE Trans. Inform Theory 50 (2004), 9, 2145-2149. MR 2097199,
Reference: [8] Matúš, F.: Urns and entropies revisited..In: 2017 IEEE International Symposium on Information Theory (ISIT) 2017, pp. 1451-1454.
Reference: [9] Stam, A. J.: Distance between sampling with and without replacement..Statistica Neerlandica 32 (1978), 2, 81-91. MR 0518630,
.

Files

Files Size Format View
Kybernetika_56-2020-6_7.pdf 561.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo