Previous |  Up |  Next

Article

Title: Brownian motion tree models are toric (English)
Author: Sturmfels, Bernd
Author: Uhler, Caroline
Author: Zwiernik, Piotr
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 6
Year: 2020
Pages: 1154-1175
Summary lang: English
.
Category: math
.
Summary: Felsenstein's classical model for Gaussian distributions on a phylogenetic tree is shown to be a toric variety in the space of concentration matrices. We present an exact semialgebraic characterization of this model, and we demonstrate how the toric structure leads to exact methods for maximum likelihood estimation. Our results also give new insights into the geometry of ultrametric matrices. (English)
Keyword: Brownian motion tree model
Keyword: ultrametric matrices
Keyword: toric geometry
MSC: 15B48
MSC: 62H22
MSC: 62R01
idMR: MR4199908
DOI: 10.14736/kyb-2020-6-1154
.
Date available: 2021-01-08T08:39:40Z
Last updated: 2021-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/148504
.
Reference: [1] Anderson, T. W.: Estimation of covariance matrices which are linear combinations or whose inverses are linear combinations of given matrices..In: Essays in Probability and Statistics (I.|,M. Mahalanobis, P. C. Rao, C. R. Bose, R. C. Chakravarti and K. J. C. Smith, eds.), Univ. of North Carolina Press, Chapel Hill, 1970, pp. 1-24. MR 0277057
Reference: [2] Bossinger, L., Fang, X., Fourier, G., Hering, M., Lanini, M.: Toric degenerations of Gr(2,n) and Gr(3,6) via plabic graphs..Ann. Combinator. 22 (2018), 3, 491-512. MR 3845745, 10.1007/s00026-018-0395-z
Reference: [3] Buneman, P.: The recovery of trees from measures of dissimilarity..In: Mathematics in the Archaeological and Historical Sciences (F. Hodson et al., ed.), Edinburgh University Press, 1971, pp. 387-395.
Reference: [4] Carlson, D., Markham, T. L.: Schur complements of diagonally dominant matrices..Czechosl. Math. J. 29 (1979), 2, 246-251. MR 0529512, 10.21136/CMJ.1979.101601
Reference: [5] Dellacherie, C., Martinez, S., Martin, J. San: Inverse M-matrices and ultrametric matrices..Springer 2118, 2014. MR 3289211, 10.1007/978-3-319-10298-6_1
Reference: [6] Draisma, J., Kuttler, J.: On the ideals of equivariant tree models..Math. Ann. 344 (2009), 3, 619-644. MR 2501304, 10.1007/s00208-008-0320-6
Reference: [7] Sullivant, J. S., Talaska, K.: Positivity for Gaussian graphical models..Adv. Appl. Math. 50 (2013), 5, 661-674. MR 3044565, 10.1016/j.aam.2013.03.001
Reference: [8] Felsenstein, J.: Maximum-likelihood estimation of evolutionary trees from continuous characters..Amer. J. Human Genetics 25 (1973), 5, 471-492.
Reference: [9] Grayson, D., Stillman, M.: Macaulay2, a software system for research in algebraic geometry..
Reference: [10] Kaveh, K., Manon, Ch.: Khovanskii bases, higher rank valuations and tropical geometry..SIAM J. Appl. Algebra Geometry 3 (2019), 2, 292-336. MR 3949692, 10.1016/j.aam.2013.03.001
Reference: [11] Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry..American Mathematical Society, Graduate Studies in Mathematics 161, Providence 2015. MR 3287221, 10.1090/gsm/161
Reference: [12] Michałek, M., Sturmfels, B., Uhler, C., Zwiernik, P.: Exponential varieties..Proc. London Math. Soc. (3), 112 (2016), 1, 27-56. MR 3458144, 10.1112/plms/pdv066
Reference: [13] Semple, Ch., Steel, M.: Phylogenetics..Oxford University Press, 2003. MR 2060009, 10.1080/10635150490888895
Reference: [14] Moulton, V., Steel, M.: Peeling phylogenetic ‘oranges’..Adv. App. Mathemat. 33 (2004), 4, 710-727. MR 2095862, 10.1016/j.aam.2004.03.003
Reference: [15] Sullivant, S., Talaska, K., Draisma, J.: Trek separation for Gaussian graphical models..Ann. Stat. 38 (2010), 3, 1665-1685. MR 2662356, 10.1214/09-aos760
Reference: [16] Varga, R. S., Nabben, R.: On symmetric ultrametric matrices..Numerical Linear Algebra (L. Reichel et al., eds.), de Gruyter, New York 1993, pp. 193-199. MR 1244160, 10.1515/9783110857658.193
Reference: [17] Zwiernik, P., Uhler, C., Richards, D.: Maximum likelihood estimation for linear Gaussian covariance models..J. Roy. Stat. Soc.: Series B (Stat. Method.) 79 (2017), 4, 1269-1292. MR 3689318, 10.1111/rssb.12217
.

Files

Files Size Format View
Kybernetika_56-2020-6_9.pdf 939.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo