Title:
|
Brownian motion tree models are toric (English) |
Author:
|
Sturmfels, Bernd |
Author:
|
Uhler, Caroline |
Author:
|
Zwiernik, Piotr |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
56 |
Issue:
|
6 |
Year:
|
2020 |
Pages:
|
1154-1175 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Felsenstein's classical model for Gaussian distributions on a phylogenetic tree is shown to be a toric variety in the space of concentration matrices. We present an exact semialgebraic characterization of this model, and we demonstrate how the toric structure leads to exact methods for maximum likelihood estimation. Our results also give new insights into the geometry of ultrametric matrices. (English) |
Keyword:
|
Brownian motion tree model |
Keyword:
|
ultrametric matrices |
Keyword:
|
toric geometry |
MSC:
|
15B48 |
MSC:
|
62H22 |
MSC:
|
62R01 |
idMR:
|
MR4199908 |
DOI:
|
10.14736/kyb-2020-6-1154 |
. |
Date available:
|
2021-01-08T08:39:40Z |
Last updated:
|
2021-03-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148504 |
. |
Reference:
|
[1] Anderson, T. W.: Estimation of covariance matrices which are linear combinations or whose inverses are linear combinations of given matrices..In: Essays in Probability and Statistics (I.|,M. Mahalanobis, P. C. Rao, C. R. Bose, R. C. Chakravarti and K. J. C. Smith, eds.), Univ. of North Carolina Press, Chapel Hill, 1970, pp. 1-24. MR 0277057 |
Reference:
|
[2] Bossinger, L., Fang, X., Fourier, G., Hering, M., Lanini, M.: Toric degenerations of Gr(2,n) and Gr(3,6) via plabic graphs..Ann. Combinator. 22 (2018), 3, 491-512. MR 3845745, 10.1007/s00026-018-0395-z |
Reference:
|
[3] Buneman, P.: The recovery of trees from measures of dissimilarity..In: Mathematics in the Archaeological and Historical Sciences (F. Hodson et al., ed.), Edinburgh University Press, 1971, pp. 387-395. |
Reference:
|
[4] Carlson, D., Markham, T. L.: Schur complements of diagonally dominant matrices..Czechosl. Math. J. 29 (1979), 2, 246-251. MR 0529512, 10.21136/CMJ.1979.101601 |
Reference:
|
[5] Dellacherie, C., Martinez, S., Martin, J. San: Inverse M-matrices and ultrametric matrices..Springer 2118, 2014. MR 3289211, 10.1007/978-3-319-10298-6_1 |
Reference:
|
[6] Draisma, J., Kuttler, J.: On the ideals of equivariant tree models..Math. Ann. 344 (2009), 3, 619-644. MR 2501304, 10.1007/s00208-008-0320-6 |
Reference:
|
[7] Sullivant, J. S., Talaska, K.: Positivity for Gaussian graphical models..Adv. Appl. Math. 50 (2013), 5, 661-674. MR 3044565, 10.1016/j.aam.2013.03.001 |
Reference:
|
[8] Felsenstein, J.: Maximum-likelihood estimation of evolutionary trees from continuous characters..Amer. J. Human Genetics 25 (1973), 5, 471-492. |
Reference:
|
[9] Grayson, D., Stillman, M.: Macaulay2, a software system for research in algebraic geometry.. |
Reference:
|
[10] Kaveh, K., Manon, Ch.: Khovanskii bases, higher rank valuations and tropical geometry..SIAM J. Appl. Algebra Geometry 3 (2019), 2, 292-336. MR 3949692, 10.1016/j.aam.2013.03.001 |
Reference:
|
[11] Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry..American Mathematical Society, Graduate Studies in Mathematics 161, Providence 2015. MR 3287221, 10.1090/gsm/161 |
Reference:
|
[12] Michałek, M., Sturmfels, B., Uhler, C., Zwiernik, P.: Exponential varieties..Proc. London Math. Soc. (3), 112 (2016), 1, 27-56. MR 3458144, 10.1112/plms/pdv066 |
Reference:
|
[13] Semple, Ch., Steel, M.: Phylogenetics..Oxford University Press, 2003. MR 2060009, 10.1080/10635150490888895 |
Reference:
|
[14] Moulton, V., Steel, M.: Peeling phylogenetic ‘oranges’..Adv. App. Mathemat. 33 (2004), 4, 710-727. MR 2095862, 10.1016/j.aam.2004.03.003 |
Reference:
|
[15] Sullivant, S., Talaska, K., Draisma, J.: Trek separation for Gaussian graphical models..Ann. Stat. 38 (2010), 3, 1665-1685. MR 2662356, 10.1214/09-aos760 |
Reference:
|
[16] Varga, R. S., Nabben, R.: On symmetric ultrametric matrices..Numerical Linear Algebra (L. Reichel et al., eds.), de Gruyter, New York 1993, pp. 193-199. MR 1244160, 10.1515/9783110857658.193 |
Reference:
|
[17] Zwiernik, P., Uhler, C., Richards, D.: Maximum likelihood estimation for linear Gaussian covariance models..J. Roy. Stat. Soc.: Series B (Stat. Method.) 79 (2017), 4, 1269-1292. MR 3689318, 10.1111/rssb.12217 |
. |