Previous |  Up |  Next

Article

Title: A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three (English)
Author: Li, Huanyuan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 1
Year: 2021
Pages: 43-55
Summary lang: English
.
Category: math
.
Summary: This paper proves a Serrin's type blow-up criterion for the 3D density-dependent Navier-Stokes-Korteweg equations with vacuum. It is shown that if the density $\rho $ and velocity field $u$ satisfy $\|\nabla \rho \|_{L^{\infty }(0,T; W^{1,q})} + \| u\|_{L^s(0,T; L^r_{\omega })}< \infty $ for some $q>3$ and any $(r,s)$ satisfying $2/s+3/r \le 1$, $3 <r \le \infty ,$ then the strong solutions to the density-dependent Navier-Stokes-Korteweg equations can exist globally over $[0,T]$. Here $L^r_{\omega }$ denotes the weak $L^r$ space. (English)
Keyword: Navier-Stokes-Korteweg equations
Keyword: capillary fluid
Keyword: blow-up criterion
Keyword: vacuum
Keyword: strong solutions
MSC: 35D35
MSC: 35Q35
MSC: 76D45
idZBL: 07332688
idMR: MR4218601
DOI: 10.21136/AM.2020.0228-19
.
Date available: 2021-01-28T09:58:16Z
Last updated: 2023-03-06
Stable URL: http://hdl.handle.net/10338.dmlcz/148509
.
Reference: [1] Bosia, S., Pata, V., Robinson, J. C.: A weak-$L^p$ Prodi-Serrin type regularity criterion for the Navier-Stokes equations.J. Math. Fluid Mech. 16 (2014), 721-725. Zbl 1307.35186, MR 3267544, 10.1007/s00021-014-0182-5
Reference: [2] Cho, Y., Kim, H.: Unique solvability for the density-dependent Navier-Stokes equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 59 (2004), 465-489. Zbl 1066.35070, MR 2094425, 10.1016/j.na.2004.07.020
Reference: [3] Grafakos, L.: Classical Fourier Analysis.Graduate Texts in Mathematics 249, Springer, New York (2008). Zbl 1220.42001, MR 2445437, 10.1007/978-0-387-09432-8
Reference: [4] Huang, X., Wang, Y.: Global strong solution to the 2D nonhomogeneous incompressible MHD system.J. Differ. Equations 254 (2013), 511-527. Zbl 1253.35121, MR 2990041, 10.1016/j.jde.2012.08.029
Reference: [5] Huang, X., Wang, Y.: Global strong solution with vacuum to the two dimensional density-dependent Navier-Stokes system.SIAM J. Math. Anal. 46 (2014), 1771-1788. Zbl 1302.35294, MR 3200422, 10.1137/120894865
Reference: [6] Huang, X., Wang, Y.: Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity.J. Differ. Equations 259 (2015), 1606-1627. Zbl 1318.35064, MR 3345862, 10.1016/j.jde.2015.03.008
Reference: [7] Kim, H.: A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations.SIAM J. Math. Anal. 37 (2006), 1417-1434. Zbl 1141.35432, MR 2215270, 10.1137/S0036141004442197
Reference: [8] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N.: Linear and Quasilinear Equations of Parabolic Type.Translations of Mathematical Monographs 23, American Mathematical Society, Providence (1968). Zbl 0174.15403, MR 0241822, 10.1090/mmono/023
Reference: [9] Li, H.: A blow-up criterion for the density-dependent Navier-Stokes-Korteweg equations in dimension two.Acta Appl. Math. 166 (2020), 73-83. Zbl 07181473, MR 4077229, 10.1007/s10440-019-00255-3
Reference: [10] Sohr, H.: The Navier-Stokes Equations. An Elementary Functional Analytic Approach.Birkhäuser Advanced Texts, Birkhäuser, Basel (2001). Zbl 0983.35004, MR 3013225, 10.1007/978-3-0348-0551-3
Reference: [11] Tan, Z., Wang, Y.: Strong solutions for the incompressible fluid models of Korteweg type.Acta Math. Sci., Ser. B, Engl. Ed. 30 (2010), 799-809. Zbl 1228.76038, MR 2675787, 10.1016/S0252-9602(10)60079-3
Reference: [12] Wang, T.: Unique solvability for the density-dependent incompressible Navier-Stokes-Korteweg system.J. Math. Anal. Appl. 455 (2017), 606-618. Zbl 1373.35257, MR 3665121, 10.1016/j.jmaa.2017.05.074
Reference: [13] Xu, X., Zhang, J.: A blow-up criterion for 3D compressible magnetohydrodynamic equations with vacuum.Math. Models Methods Appl. Sci. 22 (2012), Article ID 1150010, 23 pages. Zbl 1388.76452, MR 2887666, 10.1142/S0218202511500102
.

Files

Files Size Format View
AplMat_66-2021-1_3.pdf 296.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo