Previous |  Up |  Next

Article

Title: Kinetic BGK model for a crowd: Crowd characterized by a state of equilibrium (English)
Author: El Mousaoui, Abdelghani
Author: Argoul, Pierre
Author: El Rhabi, Mohammed
Author: Hakim, Abdelilah
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 1
Year: 2021
Pages: 145-176
Summary lang: English
.
Category: math
.
Summary: This article focuses on dynamic description of the collective pedestrian motion based on the kinetic model of Bhatnagar-Gross-Krook. The proposed mathematical model is based on a tendency of pedestrians to reach a state of equilibrium within a certain time of relaxation. An approximation of the Maxwellian function representing this equilibrium state is determined. A result of the existence and uniqueness of the discrete velocity model is demonstrated. Thus, the convergence of the solution to that of the continuous BGK equation is proven. Numerical simulations are presented to validate the proposed mathematical model. (English)
Keyword: discrete kinetic theory
Keyword: crowd dynamics
Keyword: BGK model
Keyword: semi-Lagrangian schemes
MSC: 35A01
MSC: 35A02
MSC: 97M70
MSC: 97N40
idZBL: 07332693
idMR: MR4218606
DOI: 10.21136/AM.2020.0153-19
.
Date available: 2021-01-28T10:01:38Z
Last updated: 2023-03-06
Stable URL: http://hdl.handle.net/10338.dmlcz/148514
.
Reference: [1] Agnelli, J. P., Colasuonno, F., Knopoff, D.: A kinetic theory approach to the dynamics of crowd evacuation from bounded domains.Math. Models Methods Appl. Sci. 25 (2015), 109-129. Zbl 1309.35176, MR 3277286, 10.1142/S0218202515500049
Reference: [2] Bellomo, N.: Modeling Complex Living Systems: A Kinetic Theory and Stochastic Game Approach.Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (2008). Zbl 1140.91007, MR 2359781, 10.1007/978-0-8176-4600-4
Reference: [3] Bellomo, N., Bellouquid, A.: On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms.Netw. Heterog. Media 6 (2011), 383-399. Zbl 1260.90052, MR 2826751, 10.3934/nhm.2011.6.383
Reference: [4] Bellomo, N., Gibelli, L.: Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds.Math. Models Methods Appl. Sci. 25 (2015), 2417-2437. Zbl 1325.91042, MR 3397538, 10.1142/S0218202515400138
Reference: [5] Bellomo, N., Gibelli, L.: Behavioral crowds: Modeling and Monte Carlo simulations toward validation.Comput. Fluids 141 (2016), 13-21. Zbl 1390.65030, MR 3569212, 10.1016/j.compfluid.2016.04.022
Reference: [6] Bouchut, F.: On zero pressure gas dynamics.Advances in Kinetic Theory and Computing Series on Advances in Mathematics for Applied Sciences 22. World Scientific, Singapore (1994), 171-190. Zbl 0863.76068, MR 1323183, 10.1142/9789814354165_0006
Reference: [7] Bouchut, F., James, F.: Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness.Commun. Partial Differ. Equations 24 (1999), 2173-2189. Zbl 0937.35098, MR 1720754, 10.1080/03605309908821498
Reference: [8] Buet, C.: A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics.Transp. Theory Stat. Phys. 25 (1996), 33-60. Zbl 0857.76079, MR 1380030, 10.1080/00411459608204829
Reference: [9] Burini, D., Gibelli, L., Outada, N.: A kinetic theory approach to the modeling of complex living systems.Modeling and Simulation in Science, Engineering and Technology. Active Particles. Vol. 1 Birkhäuser, Cham (2017), 229-258. Zbl 1368.00045, MR 3644592, 10.1007/978-3-319-49996-3_6
Reference: [10] Colombo, R. M., Rosini, M. D.: Existence of nonclassical solutions in a pedestrian flow model.Nonlinear Anal., Real World Appl. 10 (2009), 2716-2728. Zbl 1169.35360, MR 2523235, 10.1016/j.nonrwa.2008.08.002
Reference: [11] Cristiani, E., Piccoli, B., Tosin, A.: Multiscale Modeling of Pedestrian Dynamics.MS&A. Modeling, Simulation and Applications 12. Springer, Cham (2014). Zbl 1314.00081, MR 3308728, 10.1007/978-3-319-06620-2
Reference: [12] Dimarco, G., Loubere, R.: Towards an ultra efficient kinetic scheme. I: Basics on the BGK equation.J. Comput. Phys. 255 (2013), 680-698. Zbl 1349.76674, MR 3109810, 10.1016/j.jcp.2012.10.058
Reference: [13] Dimarco, G., Motsch, S.: Self-alignment driven by jump processes: Macroscopic limit and numerical investigation.Math. Models Methods Appl. Sci. 26 (2016), 1385-1410. Zbl 1341.35170, MR 3494681, 10.1142/S0218202516500330
Reference: [14] Dunford, N., Schwartz, J. T.: Linear Operators. Part I: General Theory.Wiley Classics Library. John Wiley & Sons, New York (1988). Zbl 0635.47001, MR 1009162
Reference: [15] El-Amrani, M., Seaïd, M.: A finite element modified method of characteristics for convective heat transport.Numer. Methods Partial Differ. Equations 24 (2008), 776-798. Zbl 1143.65075, MR 2402574, 10.1002/num.20288
Reference: [16] Elmoussaoui, A., Argoul, P., Rhabi, M. El, Hakim, A.: Discrete kinetic theory for 2D modeling of a moving crowd: Application to the evacuation of a non-connected bounded domain.Comput. Math. Appl. 75 (2018), 1159-1180. Zbl 1409.82013, MR 3766510, 10.1016/j.camwa.2017.10.023
Reference: [17] Golse, F., Lions, P.-L., Perthame, B., Sentis, R.: Regularity of the moments of the solution of a transport equation.J. Funct. Anal. 76 (1988), 110-125. Zbl 0652.47031, MR 0923047, 10.1016/0022-1236(88)90051-1
Reference: [18] Helbing, D.: A mathematical model for the behavior of pedestrians.Behavioral Science 36 (1991), 298-310. 10.1002/bs.3830360405
Reference: [19] Helbing, D.: A fluid-dynamic model for the movement of pedestrians.Complex Syst. 6 (1992), 391-415. Zbl 0776.92016, MR 1211939
Reference: [20] Helbing, D., Molnár, P.: Social force model for pedestrian dynamics.Phys. Rev. E 51 (1995), Article ID 4282. 10.1103/PhysRevE.51.4282
Reference: [21] Helbing, D., Molnár, P.: Self-organization phenomena in pedestrian crowds.Self-Organization of Complex Structures: From Individual to Collective Dynamics Gordon and Breach, Reading (1997), 569-577 F. Schweitzer. Zbl 0926.91068, MR 1487930
Reference: [22] Henderson, L. F.: The statistics of crowd fluids.Nature 229 (1971), 381-383. 10.1038/229381a0
Reference: [23] Henderson, L. F.: On the fluid mechanics of human crowd motion.Transp. Research 8 (1974), 509-515. 10.1016/0041-1647(74)90027-6
Reference: [24] Henderson, L. F., Lyons, D. J.: Sexual differences in human crowd motion.Nature 240 (1972), 353-355. 10.1038/240353a0
Reference: [25] Hoogendoorn, S., Bovy, P. H.: Gas-kinetic modeling and simulation of pedestrian flows.Transp. Research Record 1710 (2000), 28-36. 10.3141/1710-04
Reference: [26] Issautier, D.: Convergence of a weighted particle method for solving the Boltzmann (B.G.K.) equation.SIAM J. Numer. Anal. 33 (1996), 2099-2119. Zbl 0861.65128, MR 1427455, 10.1137/S0036142994266856
Reference: [27] Lentine, M., Grétarsson, J. T., Fedkiw, R.: An unconditionally stable fully conservative semi-Lagrangian method.J. Comput. Phys. 230 (2011), 2857-2879. Zbl 1316.76076, MR 2774321, 10.1016/j.jcp.2010.12.036
Reference: [28] Mieussens, L.: Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries.J. Comput. Phys. 162 (2000), 429-466. Zbl 0984.76070, MR 1774264, 10.1006/jcph.2000.6548
Reference: [29] Mieussens, L.: Convergence of a discrete-velocity model for the Boltzmann-BGK equation.Comput. Math. Appl. 41 (2001), 83-96. Zbl 0980.82027, MR 1808507, 10.1016/S0898-1221(01)85008-2
Reference: [30] Mischler, S.: Convergence of discrete-velocity schemes for the Boltzmann equation.Arch. Ration. Mech. Anal. 140 (1997), 53-77. Zbl 0898.76089, MR 1482928, 10.1007/s002050050060
Reference: [31] Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field CA model for evacuation dynamics.IEICE Trans. Inf. Syst. E87-D (2004), 726-732.
Reference: [32] Panferov, V. A., Heintz, A. G.: A new consistent discrete-velocity model for the Boltzmann equation.Math. Methods Appl. Sci. 25 (2002), 571-593. Zbl 0997.82036, MR 1895119, 10.1002/mma.303
Reference: [33] Perthame, B.: Global existence to the BGK model of Boltzmann equation.J. Differ. Equations 82 (1989), 191-205. Zbl 0694.35134, MR 1023307, 10.1016/0022-0396(89)90173-3
Reference: [34] Perthame, B., Pulvirenti, M.: Weighted $L^\infty$ bounds and uniqueness for the Boltzmann BGK model.Arch. Ration. Mech. Anal. 125 (1993), 289-295. Zbl 0786.76072, MR 1245074, 10.1007/BF00383223
Reference: [35] Reynolds, C. W.: Steering behaviors for autonomous characters.Proceedings of Game Developers Conference San Francisco, Miller Freeman Game Group (1999), 763-782.
Reference: [36] Ringeisen, E.: Contributions a l'étude Mathématique des Equations Cinétiques: Thèse de Doctorat en Mathématique.Université Paris-Saclay, Paris (1991), French.
Reference: [37] Rogier, F., Schneider, J.: A direct method for solving the Boltzmann equation.Transp. Theory Stat. Phys. 23 (1994), 313-338. Zbl 0811.76050, MR 1257657, 10.1080/00411459408203868
Reference: [38] Still, G. K.: Introduction to Crowd Science.CRC Press, Boca Raton (2014). 10.1201/b17097
Reference: [39] Stracquadanio, G.: High Order Semi-Lagrangian Methods for BGK-Type Models in the Kinetic Theory of Rarefied Gases: PhD Thesis.Università degli Studi di Parma, Dipartimento di Matematica e Informatica, Parma (2015).
Reference: [40] Yang, J. Y., Huang, J. C.: Rarefied flow computations using nonlinear model Boltzmann equations.J. Comput. Phys. 120 (1995), 323-339. Zbl 0845.76064, 10.1006/jcph.1995.1168
.

Files

Files Size Format View
AplMat_66-2021-1_8.pdf 634.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo