[1] Abe T., Akiyama S., Hatori O.:
Isometries of the special orthogonal group. Linear Algebra Appl. 439 (2013), no. 1, 174–188.
MR 3045229
[2] Beneduci R., Molnár L.:
On the standard K-loop structure of positive invertible elements in a $C^{*}$-algebra. J. Math. Anal. Appl. 420 (2014) no. 1, 551–562.
DOI 10.1016/j.jmaa.2014.05.009 |
MR 3229839
[4] Hatori O.:
Isometries on the special unitary group. in Function Spaces in Analysis, Contemp. Math., 645, Amer. Math. Soc., Providence, 2015, pages 119–134.
DOI 10.1090/conm/645/12925 |
MR 3382409
[5] Hatori O., Molnár L.:
Isometries of the unitary groups and Thompson isometries of the spaces of invertible positive elements in $C^{*}$-algebras. J. Math. Anal. Appl. 409 (2014), no. 1, 158–167.
DOI 10.1016/j.jmaa.2013.06.065 |
MR 3095026
[7] Hatori O., Molnár L.:
Spectral conditions for Jordan $^*$-isomorphisms on operator algebras. Studia Math. 236 (2017), no. 2, 101–126.
DOI 10.4064/sm8393-8-2016 |
MR 3610684
[10] Molnár L.:
General Mazur–Ulam type theorems and some applications. Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, Oper. Theory Adv. Appl., 250, Birkhäuser, 2015, pages 311–342.
MR 3468225
[12] Ungar A. A.:
Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity. World Scientific Publishing, Hackensack, 2008.
MR 2396580 |
Zbl 1147.83004