Previous |  Up |  Next

Article

Keywords:
loop; gyrogroup; Jordan triple product; Thompson metric; JB-algebra
Summary:
The binary operation $aba$, called Jordan triple product, and its variants (such as e.g. the sequential product $\sqrt{a} b \sqrt{a}$ or the inverted Jordan triple product $a b^{-1} a$) appear in several branches of operator theory and matrix analysis. In this paper we briefly survey some analytic and algebraic properties of these operations, and investigate their intimate connection to Thompson type isometries in different operator algebras.
References:
[1] Abe T., Akiyama S., Hatori O.: Isometries of the special orthogonal group. Linear Algebra Appl. 439 (2013), no. 1, 174–188. MR 3045229
[2] Beneduci R., Molnár L.: On the standard K-loop structure of positive invertible elements in a $C^{*}$-algebra. J. Math. Anal. Appl. 420 (2014) no. 1, 551–562. DOI 10.1016/j.jmaa.2014.05.009 | MR 3229839
[3] Gaál M.: On certain generalized isometries of the special orthogonal group. Arch. Math. (Basel) 110 (2018), no. 1, 61–70. DOI 10.1007/s00013-017-1122-4 | MR 3742293
[4] Hatori O.: Isometries on the special unitary group. in Function Spaces in Analysis, Contemp. Math., 645, Amer. Math. Soc., Providence, 2015, pages 119–134. DOI 10.1090/conm/645/12925 | MR 3382409
[5] Hatori O., Molnár L.: Isometries of the unitary groups and Thompson isometries of the spaces of invertible positive elements in $C^{*}$-algebras. J. Math. Anal. Appl. 409 (2014), no. 1, 158–167. DOI 10.1016/j.jmaa.2013.06.065 | MR 3095026
[6] Hatori O., Molnár L.: Generalized isometries of the special unitary group. Arch. Math. (Basel) 106 (2016), no. 2, 155–163. DOI 10.1007/s00013-015-0856-0 | MR 3453990
[7] Hatori O., Molnár L.: Spectral conditions for Jordan $^*$-isomorphisms on operator algebras. Studia Math. 236 (2017), no. 2, 101–126. DOI 10.4064/sm8393-8-2016 | MR 3610684
[8] Isidro J. M., Rodríguez-Palacios Á.: Isometries of JB-algebras. Manuscripta Math. 86 (1995), no. 3, 337–348. DOI 10.1007/BF02567998 | MR 1323796
[9] Lemmens B., Roelands M., Wortel M.: Hilbert and Thompson isometries on cones in JB-algebras. Math. Z. 292 (2019), no. 3–4, 1511–1547. DOI 10.1007/s00209-018-2144-8 | MR 3980302
[10] Molnár L.: General Mazur–Ulam type theorems and some applications. Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, Oper. Theory Adv. Appl., 250, Birkhäuser, 2015, pages 311–342. MR 3468225
[11] Sabinin L. V., Sabinina L. L., Sbitneva L. V.: On the notion of gyrogroup. Aequationes Math. 56 (1998), no. 1–2, 11–17. DOI 10.1007/s000100050039 | MR 1628291
[12] Ungar A. A.: Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity. World Scientific Publishing, Hackensack, 2008. MR 2396580 | Zbl 1147.83004
Partner of
EuDML logo