[1] Chernousov V., Elduque A., Knus M.-A., Tignol J.-P.:
Algebraic groups of type $D_4$, triality, and composition algebras. Doc. Math. 18 (2013), 413–468.
MR 3084556
[2] Colbourn C. J., Rosa A.:
Triple Systems. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999.
MR 1843379 |
Zbl 1030.05017
[3] Curtis R. T.: A classification of Howard Eve's `equihoops'. preprint, Bowdoin College, Brunswick, ME, 1979.
[4] Donovan D. M., Griggs T. S, McCourt T. S., Opršal J., Stanovský D.:
Distributive and anti-distributive Mendelsohn triple systems. Canad. Math. Bull. 59 (2016), no. 1, 36–49.
DOI 10.4153/CMB-2015-053-2 |
MR 3451896
[6] Goračinova-Ilieva L., Markovski S.:
Construction of Mendelsohn designs by using quasigroups of $(2,q)$-varieties. Comment. Math. Univ. Carolin. 57 (2016), no. 4, 501–514.
MR 3583302
[7] Holshouser A., Klein B., Reiter H.:
The commutative equihoop and the card game SET. Pi Mu Epsilon J. 14 (2015), no. 3, 175-–190.
MR 3445104
[10] Jacobson N.:
Lie Algebras. Interscience Tracts in Pure and Applied Mathematics, 10, Interscience Publishers (a division of John Wiley & Sons), New York, 1962.
MR 0143793 |
Zbl 0333.17009
[11] Ježek J., Kepka T.:
Quasigroups, isotopic to a group. Comment. Math. Univ. Carolinae 16 (1975), 59–-76.
MR 0367103
[12] Krapež A., Petrić Z.:
A note on semisymmetry. Quasigroups Related Systems 25 (2017), no. 2, 269–278.
MR 3738007
[13] MacLane S.:
Categories for the Working Mathematician. Graduate Texts in Mathematics, 5, Springer, New York, 1971.
MR 0354798 |
Zbl 0705.18001
[14] Mal'cev A. I.:
Multiplication of classes of algebraic systems. Sibirsk. Mat. Ž. 8 (1967), 346–365 (Russian); translated in Siberian Math. J. 8 (1967), 54–-267; The metamathematics of algebraic systems. Collected papers: 1936–1967; translated by B. F. Wells, III., Studies in Logic and the Foundations of Mathematics, 66, North-Holland Publishing, Amsterdam, 1971, pages 422-–446.
MR 0213276
[15] Mendelsohn N. S.:
A natural generalization of Steiner triple systems. Computers in number theory, Proc. Sci. Res. Council Atlas Sympos., No. 2, Oxford, 1969, Academic Press, London, 1971, pages 323–338.
MR 0321755
[16] Nowak A.:
Distributive Mendelsohn triple systems and the Eisenstein integers. available at arXiv: 1908.04966 [math.CO] (2019), 30 pages.
MR 4158514
[17] Okubo S.:
Introduction to Octonion and Other Non-Associative Algebras in Physics. Montroll Memorial Lecture Series in Mathematical Physics, 2, Cambridge University Press, Cambridge, 1995.
MR 1356224
[18] Okubo S., Osborn J. M.:
Algebras with nondegenerate associative symmetric bilinear forms permitting composition. Comm. Algebra 9 (1981), no. 12, 1233–1261.
DOI 10.1080/00927878108822644 |
MR 0618901
[20] Petersson H. P.:
Eine Identität fünften Grades, der gewisse Isotope von Kompositions-Algebren genügen. Math. Z. 109 (1969), 217–238 (German).
DOI 10.1007/BF01111407 |
MR 0242910
[21] Romanowska A. B., Smith J. D. H.:
Modal Theory: An Algebraic Approach to Order, Geomtery, and Convexity. Research and Exposition in Mathematics, 9, Heldermann, Berlin, 1985.
MR 0788695
[22] Romanowska A. B., Smith J. D. H.:
Modes. World Scientific Publishing Co., River Edge, 2002.
MR 1932199 |
Zbl 1060.08009
[23] Shcherbacov V.:
Elements of Quasigroup Theory and Applications. Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, 2017.
MR 3644366
[26] Smith J. D. H.:
An Introduction to Quasigroups and Their Representations. Studies in Advanced Mathematics, Chapman and Hall/CRC, Boca Raton, 2007.
MR 2268350 |
Zbl 1122.20035
[27] Smith J. D. H.:
Four lectures on quasigroup representations. Quasigroups Related Systems 15 (2007), no. 1, 109–140.
MR 2379128
[28] Smith J. D. H.:
Evans' normal form theorem revisited. Internat. J. Algebra Comput. 17 (2007), no. 8, 1577–1592.
MR 2378053
[30] Smith J. D. H., Romanowska A. B.:
Post-Modern Algebra. Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, New York, 1999.
MR 1673047 |
Zbl 0946.00001
[31] Smith J. D. H., Vojtěchovský P.: Okubo quasigroups. preprint, 2019.
[32] Soublin J.-P.:
Médiations. C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A115-–A117 (French).
MR 0200374