Previous |  Up |  Next

Article

Title: Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces (English)
Author: Parhizkar, M.
Author: Salimi Moghaddam, H.R.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 57
Issue: 1
Year: 2021
Pages: 1-11
Summary lang: English
.
Category: math
.
Summary: In the present paper we study naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces. We show that for homogeneous $(\alpha ,\beta )$-metric spaces, under a mild condition, the two definitions of naturally reductive homogeneous Finsler space, given in the literature, are equivalent. Then, we compute the flag curvature of naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces. (English)
Keyword: naturally reductive homogeneous space
Keyword: invariant Riemannian metric
Keyword: invariant $(\alpha ,\beta )$-metric
MSC: 53C30
MSC: 53C60
idZBL: Zbl 07332700
idMR: MR4260836
DOI: 10.5817/AM2021-1-1
.
Date available: 2021-03-05T10:30:16Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148712
.
Reference: [1] Asanov, G.S.: Finsleroid space with angle and scalar product.Publ. Math. Debrecen 67 (2005), 209–252. MR 2163126
Reference: [2] Asanov, G.S.: Finsleroid Finsler spaces of positive-definite and relativistic type.Rep. Math. Phys. 58 (2006), 275–300. MR 2281541, 10.1016/S0034-4877(06)80053-4
Reference: [3] Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler Geometry.Springer, Berlin, 2000. Zbl 0954.53001, MR 1747675
Reference: [4] Chern, S.S., Shen, Z.: Riemann-Finsler geometry.Nankai Tracts in Mathematics, vol. 6, World Scientific, 2005. MR 2169595
Reference: [5] Deng, S., Hou, Z.: Invariant Finsler metrics on homogeneous manifolds.J. Phys. A: Math. Gen. 37 (2004), 8245–8253. Zbl 1062.58007, MR 2092795, 10.1088/0305-4470/37/34/004
Reference: [6] Deng, S., Hou, Z.: Invariant Randers metrics on homogeneous Riemannian manifolds.J. Phys. A: Math. Gen. 37 (2004), 4353–4360. Zbl 1049.83005, MR 2063598, 10.1088/0305-4470/37/15/004
Reference: [7] Deng, S., Hou, Z.: Naturally reductive homogeneous Finsler spaces.Manuscripta Math. 131 (2010), 215–229. MR 2574999, 10.1007/s00229-009-0314-z
Reference: [8] Kikuchi, S.: On the condition that a space with $ (\alpha ,\beta ) $-metric be locally Minkowskian.Tensor, N.S. 33 (1979), 142–246. MR 0577431
Reference: [9] Kobayashi, S., Nomizu, K.: Foundations of differential geometry.Wiley-Interscience, New York, 1969. Zbl 0175.48504, MR 0152974
Reference: [10] Latifi, D.: Homogeneous geodesics in homogeneous Finsler spaces.J. Geom. Phys. 57 (2007), 1421–1433. MR 2289656, 10.1016/j.geomphys.2006.11.004
Reference: [11] Latifi, D.: Naturally reductive homogeneous Randers spaces.J. Geom. Phys. 60 (2010), 1968–1973. MR 2735283, 10.1016/j.geomphys.2010.08.002
Reference: [12] Matsumoto, M.: The Berwald connection of a Finsler space with an $ (\alpha ,\beta ) $-metric.Tensor, N.S. 50 (1991), 18–21. MR 1156480
Reference: [13] Matsumoto, M.: Theory of Finsler spaces with $(\alpha ,\beta )$-metric.Rep. Math. Phys. 31 (1992), 43–83. MR 1208489, 10.1016/0034-4877(92)90005-L
Reference: [14] Moghaddam, H.R. Salimi: The flag curvature of invariant $(\alpha ,\beta )-$metrics of type $\frac{(\alpha +\beta )^2}{\alpha }$.J. Phys. A: Math. Theor. 41 (2008), 6 pp., 275206. MR 2455543, 10.1088/1751-8113/41/27/275206
Reference: [15] Randers, G.: On an asymmetrical metric in the four-space of general relativity.On an asymmetrical metric in the four-space of general relativity 59 (1941), 195–199. Zbl 0027.18101, MR 0003371
Reference: [16] Shen, Z.: Lectures on Finsler Geometry.World Scientific, 2001. Zbl 0974.53002, MR 1845637
.

Files

Files Size Format View
ArchMathRetro_057-2021-1_1.pdf 458.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo