Title:
|
A note on Skolem-Noether algebras (English) |
Author:
|
Han, Juncheol |
Author:
|
Lee, Tsiu-Kwen |
Author:
|
Park, Sangwon |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
71 |
Issue:
|
1 |
Year:
|
2021 |
Pages:
|
137-154 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The paper was motivated by Kovacs' paper (1973), Isaacs' paper (1980) and a recent paper, due to Brešar et al. (2018), concerning Skolem-Noether algebras. Let $K$ be a unital commutative ring, not necessarily a field. Given a unital $K$-algebra $S$, where $K$ is contained in the center of $S$, $n\in \mathbb N$, the goal of this paper is to study the question: when can a homomorphism $\phi \colon {\rm M}_n(K)\to {\rm M}_n(S)$ be extended to an inner automorphism of ${\rm M}_n(S)$? As an application of main results presented in the paper, it is proved that if $S$ is a semilocal algebra with a central separable subalgebra $R$, then any homomorphism from $R$ into $S$ can be extended to an inner automorphism of $S$. (English) |
Keyword:
|
Skolem-Noether algebra |
Keyword:
|
(inner) automorphism |
Keyword:
|
matrix algebra |
Keyword:
|
central simple algebra |
Keyword:
|
central separable algebra |
Keyword:
|
semilocal ring |
Keyword:
|
unique factorization domain (UFD) |
Keyword:
|
stably finite ring |
Keyword:
|
Dedekind-finite ring |
MSC:
|
16K20 |
MSC:
|
16S50 |
MSC:
|
16W20 |
idZBL:
|
07332709 |
idMR:
|
MR4226474 |
DOI:
|
10.21136/CMJ.2020.0215-19 |
. |
Date available:
|
2021-03-12T16:11:28Z |
Last updated:
|
2023-04-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148732 |
. |
Reference:
|
[1] Brešar, M., Hanselka, C., Klep, I., Volčič, J.: Skolem-Noether algebras.J. Algebra 498 (2018), 294-314. Zbl 06834833, MR 3754416, 10.1016/j.jalgebra.2017.11.045 |
Reference:
|
[2] DeMeyer, F., Ingraham, E.: Separable Algebras over Commutative Rings.Lecture Notes in Mathematics 181, Springer, Berlin (1971). Zbl 0215.36602, MR 0280479, 10.1007/BFb0061226 |
Reference:
|
[3] Herstein, I. N.: Noncommutative Rings.The Carus Mathematical Monographs 15, Mathematical Association of America, New York (1968). Zbl 0177.05801, MR 0227205, 10.5948/upo9781614440154 |
Reference:
|
[4] Isaacs, I. M.: Automorphisms of matrix algebras over commutative rings.Linear Algebra Appl. 31 (1980), 215-231. Zbl 0434.16015, MR 0570392, 10.1016/0024-3795(80)90221-9 |
Reference:
|
[5] Kaplansky, I.: Fields and Rings.Chicago Lectures in Mathematics, The University of Chicago Press, Chicago (1969). Zbl 0238.16001, MR 0269449 |
Reference:
|
[6] Kovacs, A.: Homomorphisms of matrix rings into matrix rings.Pac. J. Math. 49 (1973), 161-170. Zbl 0275.16019, MR 0447332, 10.2140/pjm.1973.49.161 |
Reference:
|
[7] Lam, T. Y.: A First Course in Noncommutative Rings.Graduate Texts in Mathematics 131, Springer, New York (1991). Zbl 0728.16001, MR 1125071, 10.1007/978-1-4684-0406-7 |
Reference:
|
[8] McCoy, N. H.: Subdirectly irreducible commutative rings.Duke Math. J. 12 (1945), 381-387. Zbl 0060.05901, MR 0012266, 10.1215/S0012-7094-45-01232-4 |
Reference:
|
[9] Milinski, A.: Skolem-Noether theorems and coalgebra actions.Commun. Algebra 21 (1993), 3719-3725. Zbl 0793.16030, MR 1231628, 10.1080/00927879308824760 |
Reference:
|
[10] Rosenberg, A., Zelinsky, D.: Automorphisms of separable algebras.Pac. J. Math. 11 (1961), 1109-1117. Zbl 0116.02501, MR 0148709, 10.2140/pjm.1961.11.1109 |
Reference:
|
[11] Rowen, L.: Some results on the center of a ring with polynomial identity.Bull. Am. Math. Soc. 79 (1973), 219-223. Zbl 0252.16007, MR 0309996, 10.1090/S0002-9904-1973-13162-3 |
Reference:
|
[12] Srivastava, J. B., Shah, S. K.: Semilocal and semiregular group rings.Indag. Math. 42 (1980), 347-352. Zbl 0442.16010, MR 0587061, 10.1016/1385-7258(80)90035-9 |
. |