Title:
|
The Lie groupoid analogue of a symplectic Lie group (English) |
Author:
|
Pham, David N. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
57 |
Issue:
|
2 |
Year:
|
2021 |
Pages:
|
61-81 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A symplectic Lie group is a Lie group with a left-invariant symplectic form. Its Lie algebra structure is that of a quasi-Frobenius Lie algebra. In this note, we identify the groupoid analogue of a symplectic Lie group. We call the aforementioned structure a $t$-symplectic Lie groupoid; the “$t$" is motivated by the fact that each target fiber of a $t$-symplectic Lie groupoid is a symplectic manifold. For a Lie groupoid $\mathcal{G}\rightrightarrows M$, we show that there is a one-to-one correspondence between quasi-Frobenius Lie algebroid structures on $A\mathcal{G}$ (the associated Lie algebroid) and $t$-symplectic Lie groupoid structures on $\mathcal{G}\rightrightarrows M$. In addition, we also introduce the notion of a symplectic Lie group bundle (SLGB) which is a special case of both a $t$-symplectic Lie groupoid and a Lie group bundle. The basic properties of SLGBs are explored. (English) |
Keyword:
|
symplectic Lie groups |
Keyword:
|
Lie groupoids |
Keyword:
|
symplectic Lie algebroids |
MSC:
|
22A22 |
MSC:
|
53D05 |
idZBL:
|
Zbl 07361066 |
idMR:
|
MR4306169 |
DOI:
|
10.5817/AM2021-2-61 |
. |
Date available:
|
2021-05-11T14:20:29Z |
Last updated:
|
2021-11-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148890 |
. |
Reference:
|
[1] Baues, O., Corté, V.: Symplectic Lie groups, I – III.arXiv:1307.1629 [math.DG]. MR 3499032 |
Reference:
|
[2] Bott, R., Tu, L.: Differential Forms in Algebraic Topology.Springer, 1982. Zbl 0496.55001, MR 0658304 |
Reference:
|
[3] Chari, V., Pressley, A.: Quantum Groups.Cambridge University Press, 1994. |
Reference:
|
[4] Chevalley, C.: Theory of Lie Groups.Princeton University Press, 1946. MR 0015396 |
Reference:
|
[5] Chu, B.: Symplectic homogeneous spaces.Trans. Amer. Math. Soc. 197 (1974), 145–159. MR 0342642, 10.1090/S0002-9947-1974-0342642-7 |
Reference:
|
[6] de Leon, M., Marrero, J., Martínez, E.: Lagrangian submanifolds and dynamics on Lie algebroids.J. Phys. A: Math. Gen. 38 (24) (2005), 241–308. MR 2147171, 10.1088/0305-4470/38/24/R01 |
Reference:
|
[7] Dufour, J., Zung, N.: Poisson Structures and Their Normal Forms.Berkhäuser Verlag, 2005. MR 2178041 |
Reference:
|
[8] Kosmann-Schwarzbach, Y., Mackenzie, K.: Differential operators and actions of Lie algebroids.Quantization, Poisson brackets and beyond, vol. 315, Amer. Math. Soc., Providence, RI, 2002, pp. 213–233. MR 1958838 |
Reference:
|
[9] Lee, J.M.: Introduction to Smooth Manifolds.Springer Verlag, New York, 2003. MR 1930091 |
Reference:
|
[10] Mackenzie, K.: General Theory of Lie Groupoids and Lie Algebroids.London Mathematical Society Lecture Note Series, vol. 213, Cambridge University Press, 2005. Zbl 1078.58011, MR 2157566 |
Reference:
|
[11] Macknezie, K.: Lie Groupoids and Lie Algebroids in Differential Geometry.London Mathematical Society Lecture Note Series, vol. 124, Cambridge University Press, 1987. MR 0896907 |
Reference:
|
[12] Marle, C.M.: Differential calculus on a Lie algebroid and Poisson manifolds.arXiv:0804.2451v2 [math.DG], June 200. MR 1969436 |
Reference:
|
[13] Marle, C.M.: Calculus on Lie algebroids, Lie groupoids and Poisson manifolds.Dissertationes Math., vol. 457, Polish Academy of Sciences, 2008. MR 2455155, 10.4064/dm457-0-1 |
Reference:
|
[14] Nest, R., Tsygan, B.: Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorems.Asian J. Math. 5 (2001), 599–635. MR 1913813, 10.4310/AJM.2001.v5.n4.a2 |
Reference:
|
[15] Warner, F.: Foundations of differentiable manifolds and Lie groups.Springer Verlag, 1983. MR 0760450 |
Reference:
|
[16] Weinstein, A.: Symplectic groupoids and Poisson manifolds.Bull. Amer. Math. Soc. 16 (1) (1987), 101–104. MR 0866024, 10.1090/S0273-0979-1987-15473-5 |
. |