Title:
|
On some Diophantine equations involving balancing numbers (English) |
Author:
|
Tchammou, Euloge |
Author:
|
Togbé, Alain |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
57 |
Issue:
|
2 |
Year:
|
2021 |
Pages:
|
113-130 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we find all the solutions of the Diophantine equation $B_1^p+2B_2^p+\cdots +kB_k^p=B_n^q$ in positive integer variables $(k, n)$, where $B_i$ is the $i^{th}$ balancing number if the exponents $p$, $ q$ are included in the set $\lbrace 1,2\rbrace $. (English) |
Keyword:
|
balancing numbers |
Keyword:
|
Pell numbers |
Keyword:
|
Diophantine equation |
MSC:
|
11B39 |
idZBL:
|
Zbl 07361069 |
idMR:
|
MR4306172 |
DOI:
|
10.5817/AM2021-2-113 |
. |
Date available:
|
2021-05-11T14:26:51Z |
Last updated:
|
2021-11-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148894 |
. |
Reference:
|
[1] Altassan, A., Luca, F.: On the Diophantine equation $\sum _{j=1}^{k}jF_j^p=F_n^q$.J. Number Theory 217 (2020), 256–277. MR 4140628 |
Reference:
|
[2] Behera, A., Panda, G.K.: On the square roots of triangular numbers.Fibonacci Quart. 37 (2) (1999), 98–105. MR 1690458 |
Reference:
|
[3] Catarino, P., Campos, H., Vasco, P.: On some identities for balancing and cobalancing numbers.Ann. Math. Inform. 45 (2015), 11–24. MR 3438809 |
Reference:
|
[4] Gueth, K., Luca, F., Szalay, L.: Solutions to $F_1^p+2F_2^p+\dots +kF_k^p=F_n^q$ with small given exponents.Proc. Japan Acad. Ser. A, Math. Sci. 96 (4) (2020), 33–37. MR 4080788 |
Reference:
|
[5] Horadam, A.F.: Pell identities.Fibonacci Quart. 9 (3) (1971), 245–263. MR 0308029 |
Reference:
|
[6] Niven, I., Zuckerman, H.S., Montgomery, H.L.: An Introduction to the Theory of Numbers.fifth edition ed., John Wiley & Sons, Inc., New York, 1991. MR 1083765 |
Reference:
|
[7] Olajos, P.: Properties of Balancing, Cobalancing and Generalized Balancing Numbers.Ann. Math. Inform. 37 (2010), 125–138. MR 2753032 |
Reference:
|
[8] Panda, G.K.: Some Fascinating Properties of Balancing Numbers.Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications, Cong. Numer., vol. 194, 2009, pp. 185–189. MR 2463534 |
Reference:
|
[9] Panda, G.K., Ray, P.K.: Some links of balancing and cobalancing numbers with Pell and associated Pell numbers.Bul. Inst. Math. Acad. Sinica 6 (2011), 41–72. MR 2850087 |
Reference:
|
[10] Ray, P.K.: Balancing and cobalancing numbers.Ph.D. thesis, National Institute of Technology, Rourkela, India, 2009. |
Reference:
|
[11] Soydan, G., Németh, L., Szalay, L.: On the diophantine equation $\sum _{j=1}^{k}jF_j^p=F_n^q$.Arch. Math. (Brno) 54 (2008), 177–188. MR 3847324 |
Reference:
|
[12] Tchammou, E., Togbé, A.: On the diophantine equation $\sum _{j=1}^{k}jP_j^p=P_n^q$.Acta Math. Hungar. 162 (2) (2020), 647–676. MR 4173320, 10.1007/s10474-020-01043-4 |
. |