Previous |  Up |  Next

Article

Title: On some Diophantine equations involving balancing numbers (English)
Author: Tchammou, Euloge
Author: Togbé, Alain
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 57
Issue: 2
Year: 2021
Pages: 113-130
Summary lang: English
.
Category: math
.
Summary: In this paper, we find all the solutions of the Diophantine equation $B_1^p+2B_2^p+\cdots +kB_k^p=B_n^q$ in positive integer variables $(k, n)$, where $B_i$ is the $i^{th}$ balancing number if the exponents $p$, $ q$ are included in the set $\lbrace 1,2\rbrace $. (English)
Keyword: balancing numbers
Keyword: Pell numbers
Keyword: Diophantine equation
MSC: 11B39
idZBL: Zbl 07361069
idMR: MR4306172
DOI: 10.5817/AM2021-2-113
.
Date available: 2021-05-11T14:26:51Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148894
.
Reference: [1] Altassan, A., Luca, F.: On the Diophantine equation $\sum _{j=1}^{k}jF_j^p=F_n^q$.J. Number Theory 217 (2020), 256–277. MR 4140628
Reference: [2] Behera, A., Panda, G.K.: On the square roots of triangular numbers.Fibonacci Quart. 37 (2) (1999), 98–105. MR 1690458
Reference: [3] Catarino, P., Campos, H., Vasco, P.: On some identities for balancing and cobalancing numbers.Ann. Math. Inform. 45 (2015), 11–24. MR 3438809
Reference: [4] Gueth, K., Luca, F., Szalay, L.: Solutions to $F_1^p+2F_2^p+\dots +kF_k^p=F_n^q$ with small given exponents.Proc. Japan Acad. Ser. A, Math. Sci. 96 (4) (2020), 33–37. MR 4080788
Reference: [5] Horadam, A.F.: Pell identities.Fibonacci Quart. 9 (3) (1971), 245–263. MR 0308029
Reference: [6] Niven, I., Zuckerman, H.S., Montgomery, H.L.: An Introduction to the Theory of Numbers.fifth edition ed., John Wiley & Sons, Inc., New York, 1991. MR 1083765
Reference: [7] Olajos, P.: Properties of Balancing, Cobalancing and Generalized Balancing Numbers.Ann. Math. Inform. 37 (2010), 125–138. MR 2753032
Reference: [8] Panda, G.K.: Some Fascinating Properties of Balancing Numbers.Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications, Cong. Numer., vol. 194, 2009, pp. 185–189. MR 2463534
Reference: [9] Panda, G.K., Ray, P.K.: Some links of balancing and cobalancing numbers with Pell and associated Pell numbers.Bul. Inst. Math. Acad. Sinica 6 (2011), 41–72. MR 2850087
Reference: [10] Ray, P.K.: Balancing and cobalancing numbers.Ph.D. thesis, National Institute of Technology, Rourkela, India, 2009.
Reference: [11] Soydan, G., Németh, L., Szalay, L.: On the diophantine equation $\sum _{j=1}^{k}jF_j^p=F_n^q$.Arch. Math. (Brno) 54 (2008), 177–188. MR 3847324
Reference: [12] Tchammou, E., Togbé, A.: On the diophantine equation $\sum _{j=1}^{k}jP_j^p=P_n^q$.Acta Math. Hungar. 162 (2) (2020), 647–676. MR 4173320, 10.1007/s10474-020-01043-4
.

Files

Files Size Format View
ArchMathRetro_057-2021-2_4.pdf 495.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo