Title:
|
Prime ideal factorization in a number field via Newton polygons (English) |
Author:
|
El Fadil, Lhoussain |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
71 |
Issue:
|
2 |
Year:
|
2021 |
Pages:
|
529-543 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $K$ be a number field defined by an irreducible polynomial $F(X)\in \mathbb Z[X]$ and $\mathbb Z_K$ its ring of integers. For every prime integer $p$, we give sufficient and necessary conditions on $F(X)$ that guarantee the existence of exactly $r$ prime ideals of $\mathbb Z_K$ lying above $p$, where $\bar {F}(X)$ factors into powers of $r$ monic irreducible polynomials in $\mathbb F_p[X]$. The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly $r$ prime ideals of $\mathbb Z_K$ lying above $p$. We further specify for every prime ideal of $\mathbb Z_K$ lying above $p$, the ramification index, the residue degree, and a $p$-generator. (English) |
Keyword:
|
prime factorization |
Keyword:
|
valuation |
Keyword:
|
$\phi $-expansion |
Keyword:
|
Newton polygon |
MSC:
|
11S05 |
MSC:
|
11Y05 |
MSC:
|
11Y40 |
idZBL:
|
07361083 |
idMR:
|
MR4263184 |
DOI:
|
10.21136/CMJ.2021.0516-19 |
. |
Date available:
|
2021-05-20T13:46:24Z |
Last updated:
|
2023-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148919 |
. |
Reference:
|
[1] Bauer, M.: Über die ausserwesentliche Diskriminantenteiler einer Gattung.Math. Ann. 64 (1907), 573-576 German \99999JFM99999 38.0249.02. MR 1511458, 10.1007/BF01450065 |
Reference:
|
[2] Bauer, M.: Zur allgemeinen Theorie der algebraischen Grösen.J. Reine Angew. Math. 132 (1907), 21-32 German. MR 1580710, 10.1515/crll.1907.132.21 |
Reference:
|
[3] Cohen, S. D., Movahhedi, A., Salinier, A.: Factorization over local fields and the irreducibility of generalized difference polynomials.Mathematika 47 (2000), 173-196. Zbl 1018.12001, MR 1924496, 10.1112/S0025579300015801 |
Reference:
|
[4] Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen.Abh. Math. Klasse Königlichen Gesellsch. Wiss. Göttingen 23 (1878), 3-37 German. |
Reference:
|
[5] Fadil, L. El, Montes, J., Nart, E.: Newton polygons and $p$-integral bases of quartic number fields.J. Algebra Appl. 11 (2012), Article ID 1250073, 33 pages. Zbl 1297.11134, MR 2959422, 10.1142/S0219498812500739 |
Reference:
|
[6] Guàrdia, J., Montes, J., Nart, E.: Newton polygons of higher order in algebraic number theory.Trans. Am. Math. Soc. 364 (2012), 361-416. Zbl 1252.11091, MR 2833586, 10.1090/S0002-9947-2011-05442-5 |
Reference:
|
[7] Hensel, K.: Untersuchung der Fundamentalgleichung einer Gattung für eine reelle Primzahl als Modul und Bestimmung der Theiler ihrer Discriminante.J. Reine Angew. Math. 113 (1894), 61-83 German \99999JFM99999 25.0135.03. MR 1580345, 10.1515/crll.1894.113.61 |
Reference:
|
[8] Khanduja, S. K., Kumar, M.: Prolongations of valuations to finite extensions.Manuscr. Math. 131 (2010), 323-334. Zbl 1216.12007, MR 2592083, 10.1007/s00229-009-0320-1 |
Reference:
|
[9] MacLane, S.: A construction for absolute values in polynomial rings.Trans. Am. Math. Soc. 40 (1936), 363-395 \99999JFM99999 62.1106.02. MR 1501879, 10.1090/S0002-9947-1936-1501879-8 |
. |