Previous |  Up |  Next

Article

Title: A class of multiplicative lattices (English)
Author: Dumitrescu, Tiberiu
Author: Epure, Mihai
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 2
Year: 2021
Pages: 591-601
Summary lang: English
.
Category: math
.
Summary: We study the multiplicative lattices $L$ which satisfy the condition $ a=(a :\nobreak (a: \nobreak b))(a:b) $ for all $a,b\in L$. Call them sharp lattices. We prove that every totally ordered sharp lattice is isomorphic to the ideal lattice of a valuation domain with value group $\mathbb {Z}$ or $\mathbb {R}$. A sharp lattice $L$ localized at its maximal elements are totally ordered sharp lattices. The converse is true if $L$ has finite character. (English)
Keyword: multiplicative lattice
Keyword: Prüfer lattice
Keyword: Prüfer integral domain
MSC: 06F99
MSC: 13A15
MSC: 13F05
idZBL: 07361087
idMR: MR4263188
DOI: 10.21136/CMJ.2021.0034-20
.
Date available: 2021-05-20T13:48:43Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148923
.
Reference: [1] Ahmad, Z., Dumitrescu, T., Epure, M.: A Schreier domain type condition.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 55 (2012), 241-247. Zbl 1289.13001, MR 2987061
Reference: [2] Anderson, D. D.: Abstract commutative ideal theory without chain condition.Algebra Univers. 6 (1976), 131-145. Zbl 0355.06022, MR 0419310, 10.1007/BF02485825
Reference: [3] Anderson, D. D., Jayaram, C.: Principal element lattices.Czech. Math. J. 46 (1996), 99-109. Zbl 0898.06008, MR 1371692, 10.21136/CMJ.1996.127274
Reference: [4] Dumitrescu, T.: A Bazzoni-type theorem for multiplicative lattices.Advances in Rings, Modules and Factorizations Springer Proceedings in Mathematics & Statistics 321. Springer, Cham (2020). Zbl 07242233, 10.1007/978-3-030-43416-8_6
Reference: [5] Engler, A. J., Prestel, A.: Valued Fields.Springer Monographs in Mathematics. Springer, Berlin (2005). Zbl 1128.12009, MR 2183496, 10.1007/3-540-30035-X
Reference: [6] Gilmer, R.: Multiplicative Ideal Theory.Pure and Applied Mathematics 12. Marcel Dekker, New York (1972). Zbl 0248.13001, MR 0427289
Reference: [7] Halter-Koch, F.: Ideal Systems: An Introduction to Multiplicative Ideal Theory.Pure and Applied Mathematics, Marcel Dekker 211. Marcel Dekker, New York (1998). Zbl 0953.13001, MR 1828371, 10.1515/9783110801194
Reference: [8] Jung, C. Y., Khalid, W., Nazeer, W., Tariq, T., Kang, S. M.: On an extension of sharp domains.Int. J. Pure Appl. Math. 115 (2017), 353-360. 10.12732/ijpam.v115i2.12
Reference: [9] Larsen, M. D., McCarthy, P. J.: Multiplicative Theory of Ideals.Pure and Applied Mathematics 43. Academic Press, New York (1971). Zbl 0237.13002, MR 0414528
Reference: [10] Olberding, B.: Globalizing local properties of Prüfer domains.J. Algebra 205 (1998), 480-504. Zbl 0928.13013, MR 1632741, 10.1006/jabr.1997.7406
Reference: [11] Olberding, B., Reinhart, A.: Radical factorization in commutative rings, monoids and multiplicative lattices.Algebra Univers. 80 (2019), Article ID 24, 29 pages. Zbl 1420.13008, MR 3954364, 10.1007/s00012-019-0597-1
.

Files

Files Size Format View
CzechMathJ_71-2021-2_18.pdf 232.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo