Previous |  Up |  Next

Article

Title: Maximum number of limit cycles for generalized Liénard polynomial differential systems (English)
Author: Berbache, Aziza
Author: Bendjeddou, Ahmed
Author: Benadouane, Sabah
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 146
Issue: 2
Year: 2021
Pages: 151-165
Summary lang: English
.
Category: math
.
Summary: We consider limit cycles of a class of polynomial differential systems of the form $$ \begin {cases} \dot {x}=y, \\ \dot {y}=-x-\varepsilon (g_{21}( x) y^{2\alpha +1} +f_{21}(x) y^{2\beta })-\varepsilon ^{2}(g_{22}( x) y^{2\alpha +1}+f_{22}( x) y^{2\beta }), \end {cases} $$ where $\beta $ and $\alpha $ are positive integers, $g_{2j}$ and $f_{2j}$ have degree $m$ and $n$, respectively, for each $j=1,2$, and $\varepsilon $ is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot {x}=y$, $\dot {y}=-x$ using the averaging theory of first and second order. (English)
Keyword: polynomial differential system
Keyword: limit cycle
Keyword: averaging theory
MSC: 34C07
MSC: 34C23
MSC: 37G15
DOI: 10.21136/MB.2020.0134-18
.
Date available: 2021-05-20T13:53:01Z
Last updated: 2021-06-07
Stable URL: http://hdl.handle.net/10338.dmlcz/148929
.
Reference: [1] Alavez-Ramírez, J., Blé, G., López-López, J., Llibre, J.: On the maximum number of limit cycles of a class of generalized Liénard differential systems.Int. J. Bifurcation Chaos Appl. Sci. Eng. 22 (2012), Article ID 1250063, 14 pages. Zbl 1270.34050, MR 2916691, 10.1142/S0218127412500630
Reference: [2] Blows, T. R., Lloyd, N. G.: The number of small-amplitude limit cycles of Liénard equations.Math. Proc. Camb. Philos. Soc. 95 (1984), 359-366. Zbl 0532.34022, MR 0735378, 10.1017/S0305004100061636
Reference: [3] Buică, A., Llibre, J.: Averaging methods for finding periodic orbits via Brouwer degree.Bull. Sci. Math. 128 (2004), 7-22. Zbl 1055.34086, MR 2033097, 10.1016/j.bulsci.2003.09.002
Reference: [4] Chen, X., Llibre, J., Zhang, Z.: Sufficient conditions for the existence of at least $n$ or exactly $n$ limit cycles for the Liénard differential systems.J. Differ. Equations 242 (2007), 11-23. Zbl 1131.34026, MR 2361100, 10.1016/j.jde.2007.07.004
Reference: [5] Christopher, C., Lynch, S.: Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or restoring forces.Nonlinearity 12 (1999), 1099-1112. Zbl 1074.34522, MR 1709857, 10.1088/0951-7715/12/4/321
Reference: [6] Coppel, W. A.: Some quadratic systems with at most one limit cycle.Dynamics Reported A Series in Dynamical Systems and Their Applications 2. B. G. Teubner, Stuttgart; John Wiley & Sons, Chichester (1989), 61-88 U. Kirchgraber et al. Zbl 0674.34026, MR 1000976, 10.1007/978-3-322-96657-5_3
Reference: [7] García, B., Llibre, J., Río, J. S. Peréz del: Limit cycles of generalized Liénard polynomial differential systems via averaging theory.Chaos Solitons Fractals 62-63 (2014), 1-9. Zbl 1348.34066, MR 3200747, 10.1016/j.chaos.2014.02.008
Reference: [8] Gradshteyn, I. S., Ryzhik, I. M.: Table of Integrals, Series, and Products.Academic Press, Amsterdam (2007). Zbl 1208.65001, MR 2360010, 10.1016/C2009-0-22516-5
Reference: [9] Han, M., Yu, P.: Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles.Applied Mathematical Sciences 181. Springer, Berlin (2012). Zbl 1252.37002, MR 2918519, 10.1007/978-1-4471-2918-9
Reference: [10] Li, J.: Hilbert's 16th problem and bifurcations of planar polynomial vector fields.Int. J. Bifurcation Chaos Appl. Sci. Eng. 13 (2003), 47-106. Zbl 1063.34026, MR 1965270, 10.1142/S0218127403006352
Reference: [11] Llibre, J., Makhlouf, A.: Limit cycles of a class of generalized Liénard polynomial equations.J. Dyn. Control Syst. 21 (2015), 189-192. Zbl 1325.34042, MR 3314541, 10.1007/s10883-014-9253-4
Reference: [12] Llibre, J., Mereu, A. C., Teixeira, M. A.: Limit cycles of the generalized polynomial Liénard differential equations.Math. Proc. Camb. Philos. Soc. 148 (2010), 363-383. Zbl 1198.34051, MR 2600146, 10.1017/S0305004109990193
Reference: [13] Llibre, J., Valls, C.: On the number of limit cycles of a class of polynomial differential systems.Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 468 (2012), 2347-2360. Zbl 1371.34044, MR 2949385, 10.1098/rspa.2011.0741
Reference: [14] Llibre, J., Valls, C.: Limit cycles for a generalization of polynomial Liénard differential systems.Chaos Solitons Fractals 46 (2013), 65-74. Zbl 1258.34060, MR 3011852, 10.1016/j.chaos.2012.11.010
Reference: [15] Llibre, J., Valls, C.: On the number of limit cycles for a generalization of Liénard polynomial differential systems.Int. J. Bifurcation Chaos Appl. Sci. Eng. 23 (2013), Article ID 1350048, 16 pages. Zbl 1270.34052, MR 3047963, 10.1142/S021812741350048X
.

Files

Files Size Format View
MathBohem_146-2021-2_4.pdf 249.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo