Previous |  Up |  Next

Article

Title: Rota-Baxter operators and Bernoulli polynomials (English)
Author: Gubarev, Vsevolod
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 29
Issue: 1
Year: 2021
Pages: 1-14
Summary lang: English
.
Category: math
.
Summary: We develop the connection between Rota-Baxter operators arisen from algebra and mathematical physics and Bernoulli polynomials. We state that a trivial property of Rota-Baxter operators implies the symmetry of the power sum polynomials and Bernoulli polynomials. We show how Rota-Baxter operators equalities rewritten in terms of Bernoulli polynomials generate identities for the latter. (English)
Keyword: Rota-Baxter operator
Keyword: Bernoulli number
Keyword: Bernoulli polynomial
MSC: 11B68
MSC: 16W99
idZBL: Zbl 07413354
idMR: MR4251304
.
Date available: 2021-07-09T12:21:33Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148986
.
Reference: [1] Agoh, T.: On Bernoulli numbers, I.C. R. Math. Rep. Acad. Sci. Canada, 10, 1988, 7-12, MR 0925293
Reference: [2] Agoh, T.: Convolution identities for Bernoulli and Genocchi polynomials.Electron. J. Comb., 21, 1, 2014, 1-14, MR 3192396
Reference: [3] Agoh, T., Dilcher, K.: Integrals of products of Bernoulli polynomials.J. Math. Anal. Appl., 381, 1, 2011, 10-16, Elsevier, MR 2796188, 10.1016/j.jmaa.2011.03.061
Reference: [4] Aguiar, M.: Pre-Poisson algebras.Lett. Math. Phys., 54, 4, 2000, 263-277, Springer, MR 1846958, 10.1023/A:1010818119040
Reference: [5] Atkinson, F.V.: Some aspects of Baxter's functional equation.J. Math. Anal. Appl., 7, 1, 1963, 1-30, Elsevier, MR 0155196, 10.1016/0022-247X(63)90075-1
Reference: [6] Baxter, G.: An analytic problem whose solution follows from a simple algebraic identity.Pacific J. Math, 10, 3, 1960, 731-742, MR 0119224, 10.2140/pjm.1960.10.731
Reference: [7] Belavin, A.A., Drinfel'd, V.G.: Solutions of the classical Yang-Baxter equation for simple Lie algebras.Funct. Anal. Appl., 16, 3, 1982, 159-180, MR 0674005, 10.1007/BF01081585
Reference: [8] Carlitz, L.: Note on the integral of the product of several Bernoulli polynomials.J. London Math. Soc., s1-34, 3, 1959, 361-363, Narnia, MR 0107022, 10.1112/jlms/s1-34.3.361
Reference: [9] Cartier, P.: On the structure of free Baxter algebras.Adv. Math., 9, 2, 1972, 253-265, Academic Press, MR 0338040, 10.1016/0001-8708(72)90018-7
Reference: [10] Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann--Hilbert problem I: The Hopf algebra structure of graphs and the main theorem.Commun. Math. Phys., 210, 1, 2000, 249-273, Springer, MR 1748177, 10.1007/s002200050779
Reference: [11] Ebrahimi-Fard, K.: Loday-type algebras and the Rota-Baxter relation.Lett. Math. Phys., 61, 2, 2002, 139-147, Springer, MR 1936573, 10.1023/A:1020712215075
Reference: [12] Ebrahimi-Fard, K.: Rota-Baxter algebras and the Hopf algebra of renormalization.2006, Ph.D. Thesis, University of Bonn.
Reference: [13] Ebrahimi-Fard, K., Guo, L.: Multiple zeta values and Rota-Baxter algebras.Integers, 8, 2--A4, 2008, 1-18, MR 2438289
Reference: [14] Gessel, I.M.: On Miki's identity for Bernoulli numbers.J. Number Theory, 110, 1, 2005, 75-82, Elsevier, MR 2114674, 10.1016/j.jnt.2003.08.010
Reference: [15] Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: a foundation for computer science.1994, Addison-Wesley Professional, Reading (MA, USA), Second ed. MR 1397498
Reference: [16] Gubarev, V.: Rota-Baxter operators on unital algebras.Mosc. Math. J., (Accepted) Preprint arXiv:1805.00723v3.
Reference: [17] Gubarev, V., Kolesnikov, P.: Embedding of dendriform algebras into Rota-Baxter algebras.Cent. Eur. J. Math. -- Open Mathematics, 11, 2, 2013, 226-245, Versita, MR 3000640
Reference: [18] Guo, L.: An introduction to Rota-Baxter algebra.2012, International Press Somerville, Higher Education Press, Beijing, Surveys of Modern Mathematics, vol. 4.. MR 3025028
Reference: [19] Guo, L., Keigher, W.: Baxter algebras and shuffle products.Adv. Math., 150, 1, 2000, 117-149, MR 1744484, 10.1006/aima.1999.1858
Reference: [20] Kim, D.S., Kim, T.: Bernoulli basis and the product of several Bernoulli polynomials.Int. J. Math. Math. Sci., 2012, 2012, 12 pp, Hindawi, MR 2969368
Reference: [21] Kim, D.S., Kim, T., Lee, S.-H., Kim, Y.-H.: Some identities for the product of two Bernoulli and Euler polynomials.Adv. Differ. Equ., 2012, 95, 2012, 14 pp, Springer, MR 2948735
Reference: [22] Lehmer, D.H.: A new approach to Bernoulli polynomials.Am. Math. Mon., 95, 10, 1988, 905-911, Taylor & Francis, MR 0979133, 10.1080/00029890.1988.11972114
Reference: [23] Matiyasevich, Yu.: Identities with Bernoulli numbers.1997, http://logic.pdmi.ras.ru/~yumat/Journal/Bernoulli/bernulli.htm.
Reference: [24] Miki, H.: A relation between Bernoulli numbers.J. Number Theory, 10, 3, 1978, 297-302, Elsevier, MR 0506640, 10.1016/0022-314X(78)90026-4
Reference: [25] Miller, J.B.: Some properties of Baxter operators.Acta Math. Hung., 17, 3-4, 1966, 387-400, Akadémiai Kiadó, co-published with Springer Science+ Business Media BV MR 0205074
Reference: [26] Newsome, N.J., Nogin, M.S., Sabuwala, A.H.: A proof of symmetry of the power sum polynomials using a novel Bernoulli number identity.J. Integer Seq., 20, 2, 2017, 10 pp, MR 3680201
Reference: [27] Nielsen, N.: Traité élémentaire des nombres de Bernoulli.1923, Gauthier-Villars,
Reference: [28] Ogievetsky, O., Popov, T.: $R$-matrices in rime.Adv. Theor. Math. Phys., 14, 2, 2010, 439-505, MR 2721653, 10.4310/ATMP.2010.v14.n2.a3
Reference: [29] Ogievetskii, O.V., Schechtman, V.V.: Nombres de Bernoulli et une formule de Schlömilch-Ramanujan.Mosc. Math. J., 10, 4, 2010, 765-788, MR 2791057, 10.17323/1609-4514-2010-10-4-765-788
Reference: [30] Rota, G.-C.: Baxter algebras and combinatorial identities. I.Bull. Am. Math. Soc., 75, 2, 1969, 325-329, MR 0244070, 10.1090/S0002-9904-1969-12156-7
Reference: [31] Semenov-Tyan-Shanskii, M.A.: What is a classical $r$-matrix?.Funct. Anal. its Appl., 17, 1983, 259-272, MR 0725413, 10.1007/BF01076717
Reference: [32] Sury, B., Wang, T., Zhao, F.-Z.: Identities involving reciprocals of binomial coefficients.J. Integer Seq., 7, 2, 2004, 12 pp, MR 2084860
Reference: [33] Tuenter, H.J.H.: A symmetry of power sum polynomials and Bernoulli numbers.Am. Math. Mon., 108, 3, 2001, 258-261, Taylor & Francis, MR 1834708, 10.1080/00029890.2001.11919750
Reference: [34] Zagier, D.: Curious and exotic identities for Bernoulli numbers (Appendix).Bernoulli numbers and zeta functions, 2014, 239-262, Springer, MR 3307736
Reference: [35] Zhao, J.: Multiple zeta functions, multiple polylogarithms and their special values.2016, World Scientific, Series on Number Theory and Its Applications, vol. 12.. MR 3469645
.

Files

Files Size Format View
ActaOstrav_29-2021-1_1.pdf 313.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo