Previous |  Up |  Next

Article

Title: Caristi's fixed point theorem in probabilistic metric spaces (English)
Author: Fathi Vajargah, Kianoush
Author: Mottaghi Golshan, Hamid
Author: Arjomand Far, Abbas
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 1
Year: 2021
Pages: 46-59
Summary lang: English
.
Category: math
.
Summary: In this work, we define a partial order on probabilistic metric spaces and establish some new Caristi's fixed point theorems and Ekeland's variational principle for the class of (right) continuous and Archimedean t-norms. As an application, a partial answer to Kirk's problem in metric spaces is given. (English)
Keyword: probabilistic metric space
Keyword: Caristi's fixed point
Keyword: Archimedean t-norm
MSC: 47H10
MSC: 58E30
idZBL: Zbl 07396255
idMR: MR4231856
DOI: 10.14736/kyb-2021-1-0046
.
Date available: 2021-07-30T12:48:17Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149026
.
Reference: [1] Abbasi, N., Golshan, H. Mottaghi: Caristi's fixed point theorem and its equivalences in fuzzy metric spaces..Kybernetika 52 (2016), 6, 966-979. MR 3607855
Reference: [2] Amini-Harandi, A.: Some generalizations of Caristi's fixed point theorem with applications to the fixed point theory of weakly contractive set-valued maps and the minimization problem..Nonlinear Anal. 72 (2010), 12, 4661-4665. MR 2639213,
Reference: [3] Boyd, D. W., Wong, J. S. W.: On nonlinear contractions..Proc. Amer. Math. Soc. 20 (1969), 458-464. MR 0239559,
Reference: [4] Caristi, J.: Fixed point theorems for mappings satisfying inwardness conditions..Trans. Amer. Math. Soc. 215 (1976), 241-251. Zbl 0305.47029, MR 0394329, 10.1090/S0002-9947-1976-0394329-4
Reference: [5] Caristi, J., Kirk, W. A.: Geometric fixed point theory and inwardness conditions..In: The geometry of metric and linear spaces (Proc. Conf., Michigan State Univ., East Lansing, Mich., 1974), pp. 74-83. Lecture Notes in Math., Vol. 490. Springer, Berlin 1975. Zbl 0315.54052, MR 0399968, 10.1007/BFb0081133
Reference: [6] Chang, S.-S., Cho, Y. J., Kang, S.-M.: Nonlinear Operator Theory in Probablistic Metric Spaces..Nova Publishers, 2001. MR 2018691
Reference: [7] George, A., Veeramani, P.: On some results in fuzzy metric spaces..Fuzzy Sets and Systems 64 (1994), 3, 395-399. Zbl 0843.54014, MR 1289545,
Reference: [8] Grabiec, M.: Fixed points in fuzzy metric spaces..Fuzzy Sets and Systems 27 (1988), 3, 385-389. Zbl 0664.54032, MR 0956385,
Reference: [9] Gregori, V., Miñana, J.-J., Morillas, S.: Some questions in fuzzy metric spaces..Fuzzy Sets and Systems 204 (2012), 71-85. Zbl 1259.54001, MR 2950797,
Reference: [10] Gregori, V., Morillas, S., Sapena, A.: On a class of completable fuzzy metric spaces..Fuzzy Sets and Systems 161 (2010), 16, 2193-2205. Zbl 1201.54011, MR 2652720,
Reference: [11] Hadzic, O., Pap, E.: Fixed Point Theory in Probabilistic Metric Spaces..Springer Science and Business Media, 2013. MR 1459163
Reference: [12] Jachymski, J. R.: Caristi's fixed point theorem and selections of set-valued contractions..J. Math. Anal. Appl. 227 (1998), 1, 55-67. MR 1652882,
Reference: [13] Khamsi, M. A.: Remarks on Caristi's fixed point theorem..Nonlinear Anal. 71 (2009), 1-2, 227-231. MR 2518029,
Reference: [14] Khamsi, M. A., Kirk, W. A.: An Introduction to Metric Spaces and Fixed Point Theory..John Wiley and Sons, 2011. MR 1818603
Reference: [15] Khamsi, M. A., Misane, D.: Compactness of convexity structures in metrics paces..Math. Japon. 41 (1995), 321-326. MR 1326965
Reference: [16] Klement, E., Mesiar, R.: Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms..Elsevier Science, 2005. MR 2166082
Reference: [17] Klement, E. P., Mesiar, R., Pap, E.: A characterization of the ordering of continuous t-norms..Fuzzy Sets and Systems 86 (1997), 2, 189-195. MR 1437918,
Reference: [18] Klement, E. P., Mesiar, R., Pap, E.: Triangular norms..Trends in Logic-Studia Logica Library 8, Kluwer Academic Publishers, Dordrecht 2000. Zbl 1087.20041, MR 1790096
Reference: [19] Klement, E. P., Mesiar, R., Pap, E.: Triangular norms. position paper ii: general constructions and parameterized families..Fuzzy Sets and Systems 145 (2004), 3, 411-438. MR 2075838,
Reference: [20] Klement, E. P., Mesiar, R., Pap, E.: Triangular norms. position paper iii: continuous t-norms..Fuzzy Sets and Systems 145 (2004), 3, 439-454. MR 2075839,
Reference: [21] Kolesárová, A.: A note on archimedean triangular norms..BUSEFAL 80 (1999), 57-60.
Reference: [22] Kramosil, I., Michálek, J.: Fuzzy metrics and statistical metric spaces..Kybernetika 11 (1075), 5, 336-344. Zbl 0319.54002, MR 0410633
Reference: [23] Menger, K.: Statistical metrics..Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 535-537. Zbl 0063.03886, MR 0007576,
Reference: [24] Moore, J. C.: Mathematical Methods for Economic Theory 1..Springer Science and Business Media, 1999. MR 1727001
Reference: [25] Schweizer, B., Sklar, A.: Statistical metric spaces..Pacific J. Math. 10 (1960), 313-334. Zbl 0136.39301, MR 0115153,
Reference: [26] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces..North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York 1983. Zbl 0546.60010, MR 0790314
Reference: [27] Sedghi, S., Shobkolaei, N., Altun, I.: A new approach to Caristi's fixed point theorem on non-Archimedean fuzzy metric spaces..Iran. J. Fuzzy Syst. 12 (2015), 2, 137-143, 157. MR 3363585
Reference: [28] Zeidler, E.: Nonlinear functional analysis and its applications I (Fixed-point theorems)..Springer-Verlag, New York 1986. MR 0816732,
Reference: [29] Zermelo, E.: Neuer Beweis für die Möglichkeit einer Wohlordnung..Math. Ann. 65 (1907), 1, 107-128. MR 1511462,
.

Files

Files Size Format View
Kybernetika_57-2021-1_4.pdf 425.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo