Previous |  Up |  Next

Article

Title: Robust observer-based finite-time $H_{\infty }$ control designs for discrete nonlinear systems with time-varying delay (English)
Author: Dong, Yali
Author: Wang, Huimin
Author: Deng, Mengxiao
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 1
Year: 2021
Pages: 102-117
Summary lang: English
.
Category: math
.
Summary: This paper investigates the problem of observer-based finite-time $H_{\infty}$ control for the uncertain discrete-time systems with nonlinear perturbations and time-varying delay. The Luenberger observer is designed to measure the system state. The observer-based controller is constructed. By constructing an appropriated Lyapunov-.Krasovskii functional, sufficient conditions are derived to ensure the resulting closed-loop system is $H_{\infty}$ finite-time bounded via observer-based control. The observer-based controller for the finite-time $H_{\infty}$ control problem is developed. Finally, a numerical example illustrates the efficiency of proposed methods. (English)
Keyword: observer-based control
Keyword: $H_{\infty }$ finite-time boundedness
Keyword: Lyapunov--Krasovskii functional
Keyword: discrete-time systems
Keyword: time-varying delay
MSC: 93B35
MSC: 93B52
MSC: 93C10
MSC: 93D09
MSC: 93D15
idZBL: Zbl 07396258
idMR: MR4231859
DOI: 10.14736/kyb-2021-1-0102
.
Date available: 2021-07-30T12:53:00Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149029
.
Reference: [1] Amato, F., Ambrosino, R., Ariola, M., Tommasi, G. De, Pironti, A.: On the finite-time boundedness of linear systems..Automatica 107 (2019), 454-466. MR 3979026,
Reference: [2] Amato, F., Darouach, M., Tommasi, G. De: Finite-time stabilizability, detectability, and dynamic output feedback finite-time stabilization of linear systems..IEEE Trans. Automat. Control 62 (2017), 12, 6521-6528. MR 3743535,
Reference: [3] Ahmad, S., Rehan, M.: On observer-based control of one-sided Lipschitz systems..J. Frankl. Inst. 353 (2016), 4, 903-916. MR 3463288,
Reference: [4] Amato, F., Arioial, M., Dorato, P.: Finite-time control of linear system subject to parametric uncertainties and disturbances..Automatica 37 (2001), 1459-1463.
Reference: [5] Cheng, J., Zhu, H., Zhong, S. M., Zeng, Y., Hou, L. Y.: Finite-time $H_{\infty}$ filtering for a class of discrete-time Markovian jump systems with partly unknown transition probabilities..Int. J. Adapt. Control Signal Process. 28 (2014), 1024-1042. MR 3269858,
Reference: [6] Dong, Y., Chen, L., Mei, S.: Observer design for neutral-type neural networks with discrete and distributed time-varying delays..Int. J. Adapt. Control Signal Process. 33 (2019), 1, 527-544. MR 3925377,
Reference: [7] Dong, Y., Li, T., Mei, S.: Exponential stabilization and $L_{2}$-gain for uncertain switched nonlinear systems with interval time-varying delay..Math. Meth. Appl. Sci. 39 (2016), 3836-3854. MR 3529387,
Reference: [8] Dong, Y., Liang, S., Wang, H.: Robust stability and $H_{\infty}$ control for nonlinear discrete-time switched systems with interval time-varying delay..Math. Meth. Appl. Sci. 42 (2019), 1999-2015. MR 3937647,
Reference: [9] Dong, Y., Liu, W., Li, T., Liang, S.: Finite-time boundedness analysis and $H_{\infty}$ control for switched neutral systems with mixed time-varying delays..J. Frankl. Inst. 354 (2017), 787-811. MR 3591977,
Reference: [10] Dong, Y., Zhang, Y., Zhang, X.: Design of observer-based feedback control for a class of discrete-time nonlinear systems with time-delay..Appl. Comput. Math., 13 (2014), 1, 107-121. MR 3307942
Reference: [11] Dorato, P.: Short time stability in linear time-varying system..In: Proc. IRE International Convention Record. Part 4, New York 1961, pp. 83-87.
Reference: [12] Karafyllis, I.: Finite-time global stabilization by means of time-varying distributed delay feedback..SIAM J. Control Optim. 45 (2006), 1, 320-342. MR 2225308,
Reference: [13] Lin, X., Du, H., Li, S.: Finite-time boundedness and $L_2$ gain analysis for switched delay systems with norm-bounded disturbance..Appl. Math. Comput. 217 (2011), 12, 5982-5993. MR 2770219,
Reference: [14] Ma, Y. C., Fu, L., Jing, Y. H., Zhang, Q. L.: Finite-time $H_{\infty}$ control for a class of discrete-time switched singular time-delay systems subject to actuator saturation..Appl. Math. Comput. 261 (2015), 264-283. MR 3345277,
Reference: [15] Nguyen, C. M., Pathirana, P. N., Trinh, H.: Robust observer-based control designs for discrete nonlinear systems with disturbances..Europ. J. Control 44 (2018), 65-72. MR 3907454,
Reference: [16] Nguyen, C. M., Pathirana, P. N., Trinh, H.: Robust observer design for uncertain one-sided Lipschitz systems with disturbances..Int. J. Robust Nonlinear Control 28 (2018), 1366-1380. MR 3756748,
Reference: [17] Nguyen, M. C., Trinh, H.: Observer design for one-sided Lipschitz discrete-time systems subject to delays and unknown inputs..SIAM J. Control Optim 54 (2016), 3, 1585-1601. MR 3509998,
Reference: [18] Song, J., He, S.: Robust finite-time $H_{\infty}$ control for one-sided Lipschitz nonlinear systems via state feedback and output feedback..J. Frankl. Inst. 352 (2015), 8, 3250-3266. MR 3369926,
Reference: [19] Stojanovic, S. B.: Robust finite-time stability of discrete time systems with interval time-varying delay and nonlinear perturbations..J. Frankl. Inst. 354 (2017), 4549-4572. MR 3655782,
Reference: [20] Zhang, W., Su, H., Zhu, F., Azar, G.: Unknown input observer design for one-sided Lipschitz nonlinear systems..Nonlinear Dyn. 79 (2015), 2, 1469-1479. MR 3302781,
Reference: [21] Zhang, Z., Zhang, Z., Zhang, H.: Finite-time stability analysis and stabilization for uncertain continuous-time system with time-varying delay..J. Frankl. Inst. 352 (2015), 1296-1317. MR 3306527,
Reference: [22] Zhang, Z., Zhang, Z., Zhang, H., Zheng, B., Karimi, H. R.: Finite-time stability analysis and stabilization for linear discrete-time system with time-varying delay..J. Frankl. Inst. 351 (2014), 3457-3476. MR 3201042,
.

Files

Files Size Format View
Kybernetika_57-2021-1_7.pdf 452.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo