Title:
|
Constrained optimality problem of Markov decision processes with Borel spaces and varying discount factors (English) |
Author:
|
Wu, Xiao |
Author:
|
Tang, Yanqiu |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
57 |
Issue:
|
2 |
Year:
|
2021 |
Pages:
|
295-311 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper focuses on the constrained optimality of discrete-time Markov decision processes (DTMDPs) with state-dependent discount factors, Borel state and compact Borel action spaces, and possibly unbounded costs. By means of the properties of so-called occupation measures of policies and the technique of transforming the original constrained optimality problem of DTMDPs into a convex program one, we prove the existence of an optimal randomized stationary policies under reasonable conditions. (English) |
Keyword:
|
constrained optimality problem |
Keyword:
|
discrete-time Markov decision processes |
Keyword:
|
Borel state and action spaces |
Keyword:
|
varying discount factors |
Keyword:
|
unbounded costs |
MSC:
|
60J27 |
MSC:
|
90C40 |
idZBL:
|
Zbl 07396268 |
idMR:
|
MR4273577 |
DOI:
|
10.14736/kyb-2021-2-0295 |
. |
Date available:
|
2021-07-30T13:09:16Z |
Last updated:
|
2021-11-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149040 |
. |
Reference:
|
[1] Altman, E.: Denumerable constrained Markov decision processes and finite approximations..Math. Meth. Operat. Res. 19 (1994), 169-191. MR 1290018, |
Reference:
|
[2] Altman, E.: Constrained Markov decision processes..Chapman and Hall/CRC, Boca Raton 1999. MR 1703380 |
Reference:
|
[3] Alvarez-Mena, J., Hernández-Lerma, O.: Convergence of the optimal values of constrained Markov control processes..Math. Meth. Oper. Res. 55 (2002), 461-484. MR 1913577, 10.1007/s001860200209 |
Reference:
|
[4] Borkar, V.: A convex analytic approach to Markov decision processes..Probab. Theory Relat. Fields 78 (1988), 583-602. MR 0950347, 10.1007/BF00353877 |
Reference:
|
[5] González-Hernández, J., Hernández-Lerma, O.: Extreme points of sets of randomized strategies in constrained optimization and control problems..SIAM. J. Optim. 15 (2005), 1085-1104. MR 2178489, |
Reference:
|
[6] Guo, X. P., Hernández-del-Valle, A., Hernández-Lerma, O.: First passage problems for nonstationary discrete-time stochastic control systems..Europ. J. Control 18 (2012), 528-538. Zbl 1291.93328, MR 3086896, |
Reference:
|
[7] Guo, X. P., Zhang, W. Z.: Convergence of controlled models and finite-state approximation for discounted continuous-time Markov decision processes with constraints..Europ. J, Oper. Res. 238 (2014), 486-496. MR 3210941, |
Reference:
|
[8] Guo, X. P., Song, X. Y., Zhang, Y.: First passage criteria for continuous-time Markov decision processes with varying discount factors and history-dependent policies..IEEE Trans. Automat. Control 59 (2014), 163-174. MR 3163332, |
Reference:
|
[9] Hernández-Lerma, O., González-Hernández, J.: Constrained Markov Decision Processes in Borel spaces: the discounted case..Math. Meth. Operat. Res. 52 (2000), 271-285. MR 1797253, |
Reference:
|
[10] Hernández-Lerma, O., Lasserre, J. B.: Discrete-Time Markov Control Processes..Springer-Verlag, New York 1996. Zbl 0928.93002, MR 1363487 |
Reference:
|
[11] Hernández-Lerma, O., Lasserre, J. B.: Discrete-Time Markov Control Processes..Springer-Verlag, New York 1999. Zbl 0928.93002, MR 1363487 |
Reference:
|
[12] Hernández-Lerma, O., Lasserre, J. B.: Fatou's lemma and Lebesgue's convergence theorem for measures..J. Appl. Math. Stoch. Anal. 13(2) (2000), 137-146. MR 1768500, |
Reference:
|
[13] Huang, Y. H., Guo, X. P.: First passage models for denumerable semi-Markov decision processes with nonnegative discounted costs..Acta. Math. Appl. Sin-E. 27(2) (2011), 177-190. Zbl 1235.90177, MR 2784052, |
Reference:
|
[14] Huang, Y. H., Wei, Q. D., Guo, X. P.: Constrained Markov decision processes with first passage criteria..Ann. Oper. Res. 206 (2013), 197-219. MR 3073845, |
Reference:
|
[15] Mao, X., Piunovskiy, A.: Strategic measures in optimal control problems for stochastic sequences..Stoch. Anal. Appl. 18 (2000), 755-776. MR 1780169, |
Reference:
|
[16] Piunovskiy, A.: Optimal Control of Random Sequences in Problems with Constraints..Kluwer Academic, Dordrecht 1997. MR 1472738 |
Reference:
|
[17] Piunovskiy, A.: Controlled random sequences: the convex analytic approach and constrained problems..Russ. Math. Surv., 53 (2000), 1233-1293. MR 1702690, |
Reference:
|
[18] Prokhorov, Y.: Convergence of random processes and limit theorems in probability theory..Theory Probab Appl. 1 (1956), 157-214. MR 0084896, |
Reference:
|
[19] Wei, Q. D., Guo, X. P.: Markov decision processes with state-dependent discount factors and unbounded rewards/costs..Oper. Res. Lett. 39 (2011), 369-374. MR 2835530, |
Reference:
|
[20] Wu, X., Guo, X. P.: First passage optimality and variance minimization of Markov decision processes with varying discount factors..J. Appl. Probab. 52(2) (2015), 441-456. MR 3372085, |
Reference:
|
[21] Zhang, Y.: Convex analytic approach to constrained discounted Markov decision processes with non-constant discount factors..TOP 21 (2013), 378-408. Zbl 1273.90235, MR 3068494, |
. |