Previous |  Up |  Next

Article

Keywords:
Prüfer domain; factorization
Summary:
We explore the connection between atomicity in Prüfer domains and their corresponding class groups. We observe that a class group of infinite order is necessary for non-Noetherian almost Dedekind and Prüfer domains of finite character to be atomic. We construct a non-Noetherian almost Dedekind domain and exhibit a generating set for the ideal class semigroup.
References:
[1] Coykendall, J., Hasenauer, R. E.: Factorization in Prüfer domains. Glasg. Math. J. 60 (2018), 401-409. DOI 10.1017/S0017089517000179 | MR 3784055 | Zbl 1393.13013
[2] Gilmer, R.: Multiplicative Ideal Theory. Queen's Papers in Pure and Applied Mathematics 90. Queen's University, Kingston (1992). MR 1204267 | Zbl 0804.13001
[3] Hasenauer, R. E.: Normsets of almost Dedekind domains and atomicity. J. Commut. Algebra 8 (2016), 61-75. DOI 10.1216/JCA-2016-8-1-61 | MR 3482346 | Zbl 1343.13010
[4] Loper, A.: Sequence domains and integer-valued polynomials. J. Pure Appl. Algebra 119 (1997), 185-210. DOI 10.1016/S0022-4049(96)00025-4 | MR 1453219 | Zbl 0960.13005
[5] Olberding, B.: Factorization into radical ideals. Arithmetical Properties of Commutative Rings and Monoids Lecture Notes in Pure and Applied Mathematics 241. Chapman & Hall/CRC, Boca Raton (2005), 363-377. DOI 10.1201/9781420028249.ch25 | MR 2140708 | Zbl 1091.13002
Partner of
EuDML logo