Previous |  Up |  Next

Article

Keywords:
elliptic equation; exponential nonlinearity; scalar Chern-Simons equation; signed measure
Summary:
We investigate the effect of admitting signed measures as a datum at the scalar Chern-Simons equation \[ -\Delta u + {\rm e}^u({\rm e}^u-1) =\mu \quad \mbox {in}\ \Omega \] with the Dirichlet boundary condition. Approximating $\mu $ by a sequence $(\mu _n)_{n \in \mathbb N}$ of $L^1$ functions or finite signed measures such that this equation has a solution $u_n$ for each $n\in \mathbb {N}$, we are interested in establishing the convergence of the sequence $(u_n)_{n\in \mathbb {N}}$ to a function $u^{\#}$ and describing the form of the measure which appears on the right-hand side of the scalar Chern-Simons equation solved by $u^{\#}$.
References:
[1] Bartolucci, D., Leoni, F., Orsina, L., Ponce, A. C.: Semilinear equations with exponential nonlinearity and measure data. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 799-815. DOI 10.1016/j.anihpc.2004.12.003 | MR 2172860 | Zbl 1148.35318
[2] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011). DOI 10.1007/978-0-387-70914-7 | MR 2759829 | Zbl 1220.46002
[3] Brezis, H., Marcus, M., Ponce, A. C.: Nonlinear elliptic equations with measures revisited. Mathematical Aspects of Nonlinear Dispersive Equations Lectures of the CMI/IAS workshop on Mathematical aspects of nonlinear PDEs, Princeton, 2004. Ann. Math. Stud. 163. Princeton Univ. Press, Princeton 55-109 J. Bourgain et al. DOI 10.1515/9781400827794.55 | MR 2333208 | Zbl 1151.35034
[4] Brezis, H., Merle, F.: Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x)e^u$ in two dimensions. Commun. Partial Differ. Equations 16 (1991), 1223-1253. DOI 10.1080/03605309108820797 | MR 1132783 | Zbl 0746.35006
[5] Brezis, H., Strauss, W. A.: Semi-linear second-order elliptic equations in $L^{1}$. J. Math. Soc. Japan 25 (1973), 565-590. DOI 10.2969/jmsj/02540565 | MR 0336050 | Zbl 0278.35041
[6] Evans, L. C., Gariepy, R. F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics, CRC Press, Boca Raton (1992). DOI 10.1201/b18333 | MR 1158660 | Zbl 0804.28001
[7] Lin, C.-S., Ponce, A. C., Yang, Y.: A system of elliptic equations arising in Chern-Simons field theory. J. Funct. Anal. 247 (2007), 289-350. DOI 10.1016/j.jfa.2007.03.010 | MR 2323438 | Zbl 1206.35096
[8] Marcus, M., Ponce, A. C.: Reduced limits for nonlinear equations with measures. J. Funct. Anal. 258 (2010), 2316-2372. DOI 10.1016/j.jfa.2009.09.007 | MR 2584747 | Zbl 1194.35483
[9] Ponce, A. C.: Elliptic PDEs, Measures and Capacities. From the Poisson Equation to Nonlinear Thomas-Fermi Problems. EMS Tracts in Mathematics 23. EMS, Zürich (2016). DOI 10.4171/140 | MR 3675703 | Zbl 1357.35003
[10] Ponce, A. C., Presoto, A. E.: Limit solutions of the Chern-Simons equation. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 84 (2013), 91-102. DOI 10.1016/j.na.2013.02.004 | MR 3034574 | Zbl 1282.35395
[11] Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier 15 (1965), 189-257 French. DOI 10.5802/aif.204 | MR 192177 | Zbl 0151.15401
[12] Vázquez, J. L.: On a semilinear equation in $\Bbb R^{2}$ involving bounded measures. Proc. R. Soc. Edinb., Sect. A 95 (1983), 181-202. DOI 10.1017/S0308210500012907 | MR 726870 | Zbl 0536.35025
Partner of
EuDML logo